学年

教科

質問の種類

物理 高校生

この問題って反時計回りに回ると上向きの磁場が増えるので、下向きの磁場を作り出そうとしないのですか?

用いて表せ。 た。 位置エネルギー E, を、それぞれ計算し、両者が等しくなることを示せ。 [21 新潟大] しているジュール熱P, と, コイルが単位時間当たりに失 130. 〈回転する導体棒に生じる誘導起電力〉 次の文中の空欄 ア~オに当てはまる式を書け。 また, 空欄 ac には当ては まる向きを図1の①~⑥の矢印の中から選べ。 図2には適切なグラフの概形をかけ。 図1のように、 鉛直上向きの磁束密度の大きさ B[T〕 の一様な磁場中に, 導線でできた点を中心とする半径 am〕 の円形コイルが水平に置かれている。 円形コイル の上には長さαの細い導体棒の一端Pがのせられ,導体 棒の他端は,点の位置で,磁場に平行な回転軸に取り つけられている。 導体棒 OP は点Oを中心として,端P が常に円形コイルと接触しながら, 水平面内でなめらか に回転することができ, そのときの導体棒と円形コイル の間の摩擦はないものとする。 回転軸も導体であり,回 転軸と円形コイルの間に抵抗値 R [Ω] の抵抗Rとスイ ッチSを接続している。 BL 0 ⑥ 円形のコイル 電場の強さ 回転軸 B 抵抗 R 図 1 スイッチS (N/C) 0 a 点 0からの距離(m) 図2 スイッチSを開いて,導体棒を点を中心として鉛直 上方から見て反時計回りに,一定の角速度 rad/s] で 回転させる。このとき導体棒OPの中点Qに位置する 導体棒中の電気量 -e [C] の電子が磁場から受ける力の 大きさは ア 〔N〕 で,その向きは図1の矢印 の向きである。この力は,導体棒中に生じる電場から電子が受ける力とつりあう。導体棒中 に生じる電場の強さは点0からの距離によって異なる。図 2 に OP 間の各点における電場 の強さのグラフを、横軸に点0からの距離をとり,縦軸を適切に定めてかけ。 a 次に,スイッチSを閉じて, 導体棒を点を中心として鉛直上方から見て反時計回りに、 一定の角速度で回転させる。 導体棒が磁場を横切ることにより OP 間に起電力が生じる。 この起電力の大きさはイ 〔V〕 で, 導体棒を流れる電流の向きは図1の矢印b の向 きである。このとき, 抵抗Rで消費される電力はウ 〔W〕 である。 導体棒に電流が流れ ることにより導体棒全体が磁場から受ける力は,大きさが エ [N] で、図1の矢印 [ [c の向きである。 磁場から受けるこの力のすべてが導体棒の中点Qにはたらくと考え ると,導体棒を一定の角速度で回転させるために必要な仕事率はオ 〔W〕 である。 C 〔15 同志社大〕 (図)

未解決 回答数: 1
物理 高校生

【物理記述】 物理の記述がどこまで説明すればいいのかわかりません💦例えば新しい力を表す文字を使う時、図に書いていれば説明しなくても良いかなどです、、、他にも記述で気をつけることやこと回答でダメな箇所があったら指摘してくれると嬉しいです🙇‍♀️

1 軽いばねの両端に同じ質量mの物体AとBを取 りつけ, 滑らかな円筒状のガードでばねが鉛直に保 たれるようにして,Bを床の上に置いたところ、ば ねの長さが自然長よりα だけ縮んだ位置 0でAは 静止した。重力加速度を g とする。 (1) ばねのばね定数はいくらか。 また, 床がBか ら受ける力の大きさはいくらか。 B に作用する力 のつり合いより求めよ。 0 a P ZAZ (2)Aを0点よりさらにαだけ下のP点まで押し下げて、静かに放し たところAは振動した。 (ア) 振動中のAの速さの最大値はいくらか。 (イ) 0点を原点とし、 鉛直下向きを正とするx軸をとると, Aの位 置xは放してからの時間とともにどのように変わるか。 x をtの 関数として表せ。 (3) はじめにAを0点より押し下げる距離を6にして運動させたとき Aの振動中にBが床から離れて上方に動き出さないためには, bの 値はどれだけ以下でなければならないか。

回答募集中 回答数: 0
物理 高校生

なぜ答えは③になるのでしょうか

図1に示すように、磁束密度の大きさが B 〔T] でy軸の正の向きを向いた一様 な磁場 (磁界) 中で, 細い導線でできた長方形の一巻きコイル ABCD が回転する。 辺AB と辺 CD の長さはα 〔m〕 であり,辺BCと辺DAの長さは6〔m〕 である。 辺 AB, BC, CD の電気抵抗は無視できるが, 辺 DAの電気抵抗は R [Q] である。 点Aは座標原点にある。 コイルは軸にある辺AD を軸にして,軸の正の側か ら見て反時計回りに一定の角速度w 〔rad/s] で回転している。 一巻きコイルの自 己インダクタンスは無視できる。 必要であれば以下の公式を用いてもよい。 sin (a ±3 = sin a cos β ± cosa sin 3 cos(a±β)= cos a cos β 干 sin a sin β Z (複号同順) 図1のように, 軸の正の向きと辺ABのなす角が0 〔rad〕 のとき, 辺BCの速度 ア である。 辺BCの中にある電荷-e [C] (ただ の成分 [m/s] はv= 0-0のとき、 le > 0) を持つ自由電子の速度のæ成分もと同じとすれば, 0<0く 電子は イ のローレンツ力を受ける。 これによって, 閉じている一巻きコ イル ABCD には誘導電流が流れる。 2 これを,コイルを貫く磁束が時間的に変化するという見方で見てみよう。 コイル の面と常に垂直でコイルとともに回転する矢印Nを図1のようにとる。 コイルの面 を矢印Nの向きに磁束線が貫く場合, コイルを貫く磁束は正, 逆向きに貫く場合 πT を負とする。 0 の範囲がー <0 の場合,磁束線はコイルを矢印Nの向きに買 2 2 いており, コイルを貫く磁束 (0) 〔Wb] は ウである。ファラデーの電磁誘

回答募集中 回答数: 0
物理 高校生

Rは球体と四角の物体の間で生じる垂直抗力です。 (3)の解答の所で①から②を引いてaを消してるのは 同じ加速度じゃなくなったらRが消えるのでRが存在するギリギリのところで考えるためですよね?この考え方で合ってるか教えてください。

2μ'g (M+m) 178. ばねに乗った物体 解答 (1) 2mgsino k D 左 VIA, N 台C (2) Ama=k(L-x) -R-mgsin0 B:ma=R-mgsin0 (3) UR (2)(3)AとBがおよぼしあう垂直抗力は、作用・反作用の関係にあり R=0 となったとき, BはAからはなれる。 指針 (1) AとBを一体と考えて、力のつりあいの式を立てる。 解説 (1) ばねの縮みをdとする。A,Bを一体とみなすと,運動方 向に受ける力は図1のように示され, 力のつりあいの式は、 kd-2mgsin0=0 d= 2mgsin ST るん 受ける力 (2) Aが位置xにあるとき, ばねの縮みはlo-x, Aがばねから受ける弾性力はk(l-x) となる。 AR Bが受ける運動方向の力は,それぞれ図2のよう に示される。これから,運動方程式を立てると A:ma=k(l-x)-R-mgsin 0 B:ma=R-mgsino mgsino_ 2mg sin 0 asing 0 0002mg 大日 ak(lo-x) ・・・① 0 mg O ...2 【Aに着目】 (3) BがAからはなれるのは, R=0 となる位置である。 式①一式 ②か ら αを消去してRについて整理すると, 0=k(Z-x)-2R R= k(lo-x) 2 この式から,x=1のとき, R=0 となることがわかる。 したがって, BがAからはなれるのは, ばねが自然の長さのときである。 kd mgsin a. R x mg 0 【Bに着目】 ばねが自然の長 も短いとき,Aは 向きの弾性力を受 自然の長さよりも き, 下向きの弾性 ける。

回答募集中 回答数: 0
物理 高校生

教えてください🙏

18 リピートノート物理② リピートノート物理② 19 10 確認問題(1) 17問 月 ②この定在波の波長はいくらか。 26 波の伝わる速さ 水面を波が伝わっている。この波の隣りあう山の間隔は2.0mである。水面に小さな 浮きを浮かべると 10s間で5回上下に振動した。 ただし、浮きが最も高い位置に来たときから再び同じ 位置に来るときまでを1回の振動とする。 次の問いに有効数字2桁で答えよ。 (センター試験改) □ ③ 弦を伝わる波の速さはいくらか。 □ (1) この波の波長はいくらか。 □(2) この波の周期はいくらか。 ■ (3) この波が伝わる速さはいくらか。 27 重ね合わせの原理 左下の図は、お互いに逆向きに進む2つのパルス波のある時刻における波形を表 している。この後、2つのパルス波がそれぞれ矢印の向きに3目盛り進んだときの合成波の波形を右下の方 に作図せよ。 (センター試験改) 位 0 位 20 (2) おもりや弦は(1)と同じままで,振動数を小さくして基本振動をさせた。 ①このときに生じる定在波の波長はいくらか。 □②このときの定在波の振動数はいくらか。 ただし、おもりや弦を変えない場合は、 波の伝わる速さも変 わらない。 30 気柱の共鳴 管楽器は、管の口に息を吹きつけたときに生じる気柱の共鳴を利用して音を出す。 管内の 気柱の共鳴について,次の問いに答えよ (数値は有効数字3桁)。 ただし, 音の速さを341m/sとし、開口端 補正は無視できるものとする。 (1) 図1のように細長い管を用意し、 管の一端の近くに振動数∫[Hz] の音源を置く。 音源の振動数を0Hzから徐々に大きくしていくと, f=440 [Hz] で初めて共鳴が 生じた。 ①管の中に生じている定在波の波形を, 右の図に作図せよ。 ②このときの音の波長はいくらか。 笛の 管の長さ 10 (センター試験改) 図1 音源 細長い管 0 位置 0 位置 うなり バイオリンのある弦をはじくと, 振動数440Hz のおんさの音よりわずかに低い音がした。 バ リンの弦をはじくと同時におんさを鳴らしたところ, 0.5sの周期でうなりが聞こえた。 このとき,次の (センター試験改) v = fd 341= 440 A λ = s間に生じるうなりの回数はいくらか。 □③ 管の長さはいくらか。 のときに弦が発した音の振動数はいくらか。 (2)次に, 図2のように、同じ管の一端を手で閉じて同様の実験を行う。 音源の振 動数を0Hzから徐々に大きくしていくと. ある振動数のときに初めて共鳴が生 じた。 図2 音源 □ ① 管の中に生じている定在波の波形を. 右の図に作図せよ。 振動 図のように軽い弦を, 端Aで振動片につけ, 端Bでは しておもりをつるした。 次の問いに答えよ。 ■片を60Hzの振動数で振動させると, AB間 (長さ1.5m) に3 をもつ定在波が生じた。 のときの固有振動を, 何振動というか。 □ ② このときの音の波長はいくらか。 ③このときの音源の振動数を答えよ。

回答募集中 回答数: 0