学年

教科

質問の種類

物理 高校生

共通テストプレ、物理基礎第3問の問2についてです。 答えは①なのですが、なんでそうなるのかがわかりません。 波ができた直後の状態は②だと思うんですが、そこから1波長分動くだけなので答えは③で変わらないと思いました… 教えてください!🙇

物理基礎 第3問 縦波の性質および気柱の共鳴について後の問い(問1~5)に答えよ。 (配点 16) 縦波は波の進行方向と媒質の進行方向が平行である。 縦波の伝わり方を考えるため に以下のような実験を行った。 図1のように, なめらかで水平な面をもつ机の上に自 然の長さが150cmのばねを置き, ばねの右端は支柱に固定した。 自然の長さの状態 のときのばねの左端を原点としてばねに沿った向きに x軸を設定する。 ばねに5cm の間隔で軽いリボンを結び, 左端(原点 x = 0) から0番,1番,2番,3番… 20番 (x=100cm) と番号をふる。 図2のように, 0番のリボンを時刻 t=0s から振幅 1.0cm, 周期 0.80sでx軸方向に1回だけ振動させた。 ただし, x軸の正の向きの 変位を軸の正の向き,x軸の負の向きの変位をy軸の負の向きとして表している。 ばねの振動が伝わる速さ, すなわち波の伝わる速さは50cm/sであり、水平面とば ねの接触部分の摩擦およびリボンの空気抵抗は無視できるものとする。 机 リボン 3 0 5 10 15 0. 1 0000000000000 240 ① 10 1 19 20 [*] 95 100 ② 20 poooooo 3 30 支柱 150 - 16 - -x [cm] y[cm〕 1.0 ④40 0. -1.0 問1 ばねを伝わる波の波長はいくらか。その値として最も適当なものを,次の ①~ ⑤のうちから一つ選べ。 12 cm 20140 70.80+[s] 図 2 5 50

回答募集中 回答数: 0
物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

の長さ h=250 -E 0° ngcos3 0° _mgcos30 30° 168. 弾性体のエネルギー 解答 (1) 解説を参照 (2) (4) x= mg k V= x= mg_ k m k て,x2= g 物体は重力弾性力、垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。また, 板が物体からはなれるとき,垂直抗力が0となる。(3)物体は重力,弾 性力の保存力だけから仕事をされ,その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。 (4) 運動エネル ギーをxの関数として式で表し, 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きにkx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから, mg-kx-N=0 N=mg-kx ...① これから, Nxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N = 0 となる。 (3) mg 図2のグラフから, N = 0 となるxの値は, x= k 2mg k mg のとき, k 図1 Rx N x=0, x = 0 は板を取り去った位置なので、 解答に適さない。 したがって 2mg k mg (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも 0である。 ばね の伸びが最大になるときの物体の位置を x1 とすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/12 kx² と表される(図3)。これから,力学 図3 的エネルギー保存の法則の式を立てると, 0=0-mgx + 1/23kx120=x(kx-2mg) 1 mv² は最大値 2 (4) 速さが最大になるときの物体の位置を x2 とする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると 0=1/2mv-mgx2+1/12kx2² 1/12mmx212/2kx=-12/21(キュー)+².② m²g² mg 2mg_ k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² となる。 2k (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 NA mgs 図2 E=0 mg k F000000006 i + 1/2kx ₁² E=0-mgx+- 0 X1 1x (3) 物体の力学的エネ ルギーは, 運動エネルギ 一. 重力および弾性力に よる位置エネルギーの和 である。 第1章 力学Ⅰ 物体の位置がx2のと き, 重力による位置エネ ルギーはmgx2, 弾性 力による位置エネルギー は kx2²/2 となる。 0/1 m² の最大値を求 めるには,式 ② のように 平方完成をするとよい。 101 some きる。 体に力を加えて, 一定の いて,この力がする仕事の仕事率を求めよ。 ただし, 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数kのばねの一端を固定し、 他端に質量mの物 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置 x を求めよ。 (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (3) 板を急に取り去った場合,ばねの伸びが最大となるときの物体の位置xを求めよ 速さ”をそれぞれ求めよ。 (拓殖大改) 自然の長さ 自然の 長さ 物体 板| Os→0 ばね < 0000 X 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を、原点Oからx軸の正の向きに距離はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。 (愛知教育大

解決済み 回答数: 1
物理 高校生

133 解説お願いします🙇

110 18 交流回路 (3)図2で、電圧の最大値はAの波形が 40V, Bが40 mVであった。 ただし, 図2でBは縦方向に拡大し ている。 電気容量Cの値はどれだけか。 (4) 図1のaとbの間にコイルを接続し、電源の電圧 を調整し (2) と同様な測定を行った。このとき,図 3のような結果が得られた。 ただし, 図3でBは縦 方向に縮小している。 電圧の最大値はAの波形が4 V, Bが10Vであった。 自己インダクタンスLの値 はどれだけか。 (5) 図1のaとbの間にコンデンサーとコイルを直列 に接続した。このときの共振周波数はどれだけか。 (6) 図1のaとbの間に抵抗, コンデンサー, コイル を直列に接続した。 交流電源の周波数を共振周波数 に合わせ、電源の電圧の最大値を10V に調整した。 このときab間に接続した抵抗, コンデンサー, コ イルで消費される電力の時間平均値はそれぞれどれ だけか。 ILA EE 0 0 庄 33. <LC並列回路> 図1のように抵抗値Rの抵抗R, 自己インダクタンスLのコイルL 電気容量CのコンデンサーCと交流電源EおよびスイッチSからなる 回路がある。 コイル内の抵抗は無視できるものとする。 〔A〕 スイッチSをつないでいない場合, cd間に実効値 Veの交流電 圧を与えたところ, ac間の電圧とab間の電圧が等しくなった。 (1) 交流電源の交流電圧の最大値を求めよ。 (2) ac間の電圧の実効値を求めよ。 (3) 交流の周波数を求めよ。 [B] スイッチSをつないだ場合, cd間に周波数fの交流 電圧を与えたところ, bに対するaの電位の瞬時値 Vab は図2のように時間とともに変化した。 (1) コイルLを流れる電流の瞬時値の実効値 を求 めよ。 (2) コンデンサーCを 流れる電流の瞬時値 Icの実効値 Ice を求 7 0 0 Vabt Vo 0 - Vo Ich Icm 0 0.01 - Icm 図2 0.01 図3 (10 大阪教育大 C 図2 0.02 時刻 (s] L 0.02 時刻 [s] b ~ めよ。 (3) Veb の時間変化に um 対するおよびIc 図3 図4 の時間変化をそれぞれ図3および図4に示せ。 ただし, それぞれの電流の最大値を Im および Icm とし, 横軸の目盛りは図2と同じものとせよ。 4 位相差 の何倍か。 (5) 図1の自己インダクタンスLを別の値L'に変えたところ、 抵抗Rに電流が流れなくな った。 L'を求めよ。 〔09 愛媛大改) 134.交流電流とリアクタンス> 図1のような電圧と角周波数を設定できる交流電源を用意した。 AB間に は、 抵抗 コンデンサー, コイルなどを接続する。 交流電源の電圧を VtVasinwt, 抵抗の抵抗値をR, コンデンサーの電気容量を C, コイル の自己インダクタンスをLとして次の各問いに答えよ。 時刻を角周波数とし, 導線の抵抗やコイルの内部抵抗は 無視できるものとする。 作図は, (2)~(4) について角周波数とリアクタンスの図1 交流電源 定性的な関係がわかるように、1つの図(図3) の中に表せ。 なお, nを整数とすると, sin (nat) および cos (nwt) の1周期にわたる時間平均は0である。 (1) AB間に抵抗をつないだとき, 回路に流れた電流はI(t) =Lsinwt であった。 (a) を VoとRで表せ。 (1) (2) (3) (b) 電源のする仕事率 (電力) の, 1周期に わたる時間平均を求めよ。 (2) AB間にコンデンサトをつないだとき, 回路に流れた電流はI(t) = Isin (wt+p2) であった。 (a) を Vo, C, w, 2の値を求めよ。 (b) コンデンサーのリアクタンス X を求め, リアク 1) タンスと角周波数の関係を実線で図示せよ。 ア (c) 電源のする仕事率の, 1周期にわたる時間平均タ を求めよ。 また, その値の物理的意味を述べよ。 18 交流回路 (3) AB間にコイルをつないだとき, 回路に流れた電 流はI(t)=Issin (wt+ps) であった。 ス C 20 offmo 図2 AB間に接続する素子など ((1) ~ (5)) C (5) ofthe 角周波数 α 図3 (a) Is を Vo, L, w で表し, の値を求めよ。 (b) コイルのリアクタンス X を求め, リアクタンスと角周波数の関係を破線で図示せ よ。 発展(4) AB間にコンデンサーとコイルを直列につないだ。 (a) リアクタンスの大きさ|X|と角周波数の関係を太い実線で図示せよ。 (b) リアクタンスの大きさが最小値をとる角周波数 を求めよ。 発展 (5) AB間に抵抗とコンデンサーとコイルを並列につないだとき, 回路に流れた全電流は I(t)=Issin (wt+ds) となった。 Is と tan Φs をそれぞれ Vo, R, C, L, ω のうち必要なも のを使って表せ。 [08 東京医歯大 改) 111 TI

回答募集中 回答数: 0