学年

教科

質問の種類

物理 高校生

2番と3番の解き方を教えてください! よろしくお願いします。

例題 10 摩擦のある斜面上での物体の運動 右図のように、傾きの角30°のあらい斜面上に,質量 14.0kgの物体を静かに置くと、物体は斜面上をすべりお りた。斜面と物体との間の動摩擦係数を0.20 とする。 (1) 物体にはたらく力を矢印で示せ。 (2)物体にはたらく動摩擦力の大きさはいくらか。 (3) 物体の加速度の大きさはいくらか。 SP 運動方程式の立て方・解き方 ① 着目する物体を決める。 (2 着目する物体にはたらく力をすべて描く。 座標軸を決める(一直線上の運動の場合, 物体が運動する向きをx軸の正の向き, それに垂直な方向を軸とするとよい)。 ④力の矢印をx軸方向, y 軸方向に分解する。 ⑤ 物体が加速度運動をするときは,運動方 程式を立てる (静止または等速直線運動の 場合は力のつり合いの式を立てる)。 (4 6 すべての物体について立てた式を連立方 程式として解いて, 力や加速度を求める。 センサー 13 動摩擦力F'=μ'N は物体 の運動する向きと逆向きに はたらく。 物理の問題には独特の表現が用いられる場合があるので ④ センサー 14 力を互いに垂直で適当な2 方向に分解して, それぞれの 方向で運動方程式を立てる。 センサー 15 運動する向きを正の向きと して, 仮に加速度を正の向 きに書き込む。 図を見なが ら、物体の運動方向にはた らく力のすべてに正負をつ けて, その合力を求め, 運 動方程式を立てる。 ①② 20 y 例傾きの角のなめらかな斜面上に置 かれた質量mの物体の運動 3 mgsinoy N 解答 (1) 物体にはたらく力は, 斜面からの垂直抗力と動摩擦 力, および重力である。 これ らを描くと、右図のように なる。 (2) 物体にはたらく力を,斜面 に平行な方向と斜面に垂直な 方向に分解する。 斜面に垂直 な方向の力のつり合いより, 垂直抗力の大きさをN〔N〕 と すると, mg mgcoso 130° >>46 130° 2 130° 垂直抗力 慣れよう。 mg 軸方向には力 のつり合いの式 y ma=mgsine ⑥ 力と加速度がわかると,さらに等加 速度直線運動の式を利用して, 位置. 速度時間を求めることもできる。 47 48 N-mgcose = 0 x軸方向には運 動方程式 N 重力 1309 動摩擦 4.0×9.8N N=4.0×9.8cos30° F = pl ・動摩擦力の大きさをF'とすると, F' = 0.20 N したがって, F'=0.20×4.0×9.8cos30°=6.7816≒ 6.8[N]) (3) 物体の斜面に平行な方向の運動方程式は、 斜面に沿って 向きを正として, 加速度の大きさを α 〔m/s-〕 とすると, 4.0a=4.0×9.8 sin 30° - 6.78 ゆえに, a = 3.205≒3.2 [m/s ]

回答募集中 回答数: 0
物理 高校生

わからないので教えていただけると幸いです🙇‍♀️

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

円運動の基礎的な問題です💦 答えだけで大丈夫なので教えてほしいです💦

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 a

回答募集中 回答数: 0
物理 高校生

写真の問題をお願いします💦 答えだけで大丈夫です!!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

答え合わせがしたいので ()の中の答えを教えてください!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

答え合わせがしたいので 穴埋めしてくださると助かります!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と TOE D Av 1 V ABA 0 a

回答募集中 回答数: 0