学年

教科

質問の種類

物理 高校生

まるで囲った図の重力の分解で重力とy方向に分解した力との間の角がなぜθになるかわかりません。 教えてもらえると嬉しいです。

問題 66 68 鉛直方向: Tsin60° + Tzsin30°-10=0 (2) おもりが受ける力は,図2のようになる。 力のつりあいから 水平方向: Tacos 30°Tcos60°=0 Tsin 60° TA ③ T2sin 30° ...4 T. 60° 30° 式 ③から, Ticos 60° T2cos 30° √3 2 T₂-2 T₁ =0 T=√3T2 ...⑤ 解説(1) 物体は, 重力, 垂直抗力, 弾性力を受け,それらの力はつ りあっている(図)。 弾性力をFとすると, 斜面に平行な方向での力の つりあいから, 垂直抗力 mgsin 0- F-mgsin0=0 F=mgsin0 式④から, 図2 10N √3 T₂ 2 -T₁+ 2 -10=0 mgsino x k これに式 ⑤を代入して、 √√√37₂+-10=0 T2 (2) ばねの縮みをxとする。 (1) の結果を用いて, フックの法則 「F=kx」 から, kx=mgsino 67.2物体のつりあい mg 2=5.0N 2 解答 したがって T=√3T2=1.73×5.0=8.65N 8.7N (1) mg 2 m (2) 2 (3) おもりが受ける力は, 図3のようになる。 力のつりあいから, 水平方向: T2- Tsin45°=0.⑥ T₁ Ticos 45° T₁ 鉛直方向: T, cos 45°-10=0.⑦ 式⑦から, 1-10=0 √2 T=10√2=10×1.41=14.1N 式⑥から, 45° 45°mans 484177₁sin45° T₂ 14 N T₁ T2- -= 0 T₁ 10/2 Tz= = √2 √2 -=10N 【別解】 (1) 図4のよ うに, T., T2の合力と重 力はつりあっている。 し たがって, 0-8001-21+ 指針 台車が受ける力を図示し, それらを斜面に平行な方向と垂直な 方向に分け, 平行な方向での力のつりあいを考える。 なお, 軽い糸は, その両端につながれた台車, おもりに同じ大きさの力をおよぼしている。 解説 (1) 糸の張力の大き さをT とすると, 台車, おも りが受ける力は,図のように 示される。 重力の斜面に平行 な方向の成分は, mgsin 30° であり,その方向での力のつ りあいから, 垂直抗力 T \T_ mgsin30° 4300 Mg mg cos 30° 30° mg 斜面に垂直な方向では. 台車が受ける重力の成分 と、 垂直抗力がつりあっ ている。 糸の張力を求め るには,斜面に垂直な方 向での力のつりあいの を立てる必要はない。 別解】 (1) 直角三角形 この辺の長さの比を利用 て、 重力の斜面に平行 方向の成分 (W) を求 ることもできる。 合力 ① 力①合力( T-mgsin30°=0 T=mgsin30°= mg W. 30° T IXPA 2 み 60° 60° Tz T=T2=10N 3 \30② 160° ② F① 45° (2) おもりが受ける糸の張力の大きさは,台車が受ける張力に等しい。 おもりの質量をMとすると, おもりが受ける力のつりあいから, ② <30° mg ① (2) 図5のように,T, T-Mg=0 Mg=T= mg 2 M= T2 の合力と重力はつり T₂ m 2 mg: Wx=2:1 mg あっている。 68. 弾性力と垂直抗力 Wx= 2 T=10x1 √3 × 図410N 図510N 8JJY 図6 V10N =5.0√3 =5.0×1.73=8.65N 8.7N 7-10x=5.0N (3) 図6のように, T., T2 の合力と重力はつりあっている。 T=10×√2 =10×1.41=14.1N 14N T2=10N 66. 斜面上での力のつりあい 解答 (1) mgsin0 (2) mgsind k 指針 物体が受ける力はつりあっており、斜面に平行な方向について, つりあいの式を立てる。 (1)~(3) それぞれ三 角形の辺の長さの比を利 用して求めている。 解答 (1) 1.0×102N/m (2) 10kg (3) 49N 指針 (1) フックの法則を用いる。 (2) おもりが受ける重力の斜面に 平行な方向の成分と, ばねの弾性力とのつりあいから おもりの質量を 求める。 (3) ばねの伸びは (2) のときと同じなので, 弾性力は変わらない。 弾性力と,重力,垂直抗力のつりあいの式を立てる。 解説(1) ばね定数をkとすると,フックの法則 「F=kx」 から, 10=kx0.10 k=1.0×10°N/m (2) おもりは箱の右側の内壁にちょうど接しており、右側の内壁から は垂直抗力を受けない。 おもりが受ける力は、 図1のように示される。 ばねの弾性力 F は, 「F=kx」 から, F=(1.0×102) x 0.49=49N おもりの質量をm とすると, おもりが受ける斜面に平行な方向の力 のつりあいから, 49-m×9.8sin30°=0 m=10kg ◎問題文では,ぱ びの単位が cm で れているので,m てフックの法則を F[N] 000000 図1 mx 30° 30° mx9 √3 (2) 別解 (2) 直角三角形の辺の長さの比を利用して, 重力の斜面に 平行な方向の成分 (Wx) を求めることもできる(図2)。 図2 (1 mx 42

解決済み 回答数: 1
物理 高校生

物理のエッセンスの力学の問題について質問です。 (2)の運動量保存の式ではmv+MV=mv0とされていますが、衝突後のMの速度は最終的に0になると言う認識でいいのでしょうか?? また、もしそうならば滑らかな床であるのにも関わらず速度を持った物体が静止する理由を教えて頂きたい... 続きを読む

①+M×② (m+M)v'= (m-M) ひ1+2Mv2 V₁ = (m-M)v₁+2Mv2 m+M ①mx② 11/12M2=1/2x2 力学 17 M . x=V √ k 3mvo M 2(m+M)V k ちなみに v= 2m-M 2(m+M) v < 0 となる (M+m)v2′'=2mv+(M-m)vz V₂ = 2mv,+(M-m)v₂ m+M 問題の図では, はじめのP,Qの速度 が右向きに描かれているが, どんなケー スであれ,この結果は通用する。 M=mのときは,U1'02,02′'=v とな って、速度の入れ替わりが起こる。 ただ, 「等質量」で「弾性衝突」 という二重の条 件が必要であることを忘れないように。 78 (1)e=0 は完全非弾性衝突ともよ ばれ, 衝突後の速度差が0, つまり一体 化する(ひっつく) ケースである。 衝突直 後の両者の速度をとすると mv=m+M)より v= m m+M -Vo このときの運動エネルギーがばねの弾性 エネルギーに変わっていくから (m+M) v² = 1½ ½ kx² m+M mvo .. x=0 からは左へはね返っている。 79 M v m V +0000000 れきぜん 速さをv, Vとする。 (速度にしない のは向きが歴然としているため) 運動量保存則は mv=MV ... ① 力学的エネルギー保存則は ......② 11/21k=1/2m+1/2 MV22 ①のVを②へ代入し m2v2 |\ {kl²=\/\mv²+ 2M =1/2m0(1+77) M kM v=l m(m+M) k √k(m+M) 衝突の直前・直後を力学的エネルギー 保存で結ぶことはできないが, 衝突後は みきわ 成り立つという見極めが大切。 (2) 衝突後のm, Mの速度を v, Vとす る。 mv+MV=mvo v-V=-(0-0) ①mx② より 3m この場合,「物体系はどれとどれ?」 と尋ねると,「P と Q」 という答えが圧倒 的だ。 それでは, ばねの力が外力として 働いてしまう。 それでも, ばねの力はP Q に対して, 逆向きで同じ大きさな ので,外力の和が0ということでセーフ なのだが, 「P と Q とばね」 を物体系と とらえるとよい。 ばねの力は内力 (グル ープを構成するメンバー間の力)となっ て気にならないし, ばねには質量がない ので,運動量は常に0 で, 保存則の式に 顔を出してこない。 80 V=- 2(m+M) -Vo 今度は板だけがばねを縮めていくので 最も高い位置にきたかどうかは,台 上の人に判断させればよい。 その人が見 てPの速度が0になったときにあたる。

解決済み 回答数: 1