学年

教科

質問の種類

物理 高校生

こういう問題で、図のO'からBまでの距離を考えていいのはなんでですか??(1)です

波の干渉 鉛直な壁で区切られた水面上の1点0に 波源があり, 振動数, 波長の円形の波 が連続的に送り出されている。 点Aは水面 と壁との境界点 点Bは水面上の点であり. 線分 OA は壁に垂直でその長さは2線 分OB は壁と平行で,その長さは4入 であ る。 波が壁で反射されるとき位相は変化し ない。 また, 波の減衰は無視する。 (1) 波が0点を出てから壁で反射されB点 にとどくのに要する時間を求めよ。 C- 4入 1次の日線(経るさ入 m=l. B (00) GA上で入 図1 32 2' (2)B点では,波は強め合っているかそれとも弱め合っているか、あ るいはそのいずれでもないかを答えよ。 (3) 線分 OA上で見られる波(合成波)は何とよばれるか。 また、その ようすを図2に描け。 0点から出る波は振幅αの正弦波であるとする。 (4) 0点より左側の半直線 OC 上で見られる合成波はどのよ うな波か。 20字程度で述べよ。 0点から出る波の振幅をαと する。 水面の変位 2a 0 -a 0-A 12 32 H Sm -2a (5) 線分 OB上 (両端を含む) で,弱め合う点はいくつある か。 -3a 距離 図2 (奈良女子大) Level (1)~(4)(5)★ Point & Hint 干渉では2つの波源からの距離の差が重要。 強め合いの位 置では山と山(あるいは谷と谷)が重なって振幅は2倍となり、弱め合いの 位置では山と谷が重なって振幅は0となる。

解決済み 回答数: 1
物理 高校生

(2)(3)についてです。なんで力学的エネルギーの法則を使うと分かるんでしょうか。

54 54 第1編 運動とエネルギー 例題 25 力学的エネルギーの保存 ➡64,65 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつながっており,点Cにばね 定数 50N/m の長いばねがつけてある。 2.5m 水平面 BC から 2.5mの高さの点Aに質量 2.0kgの物体を置き, 静かにす べり落とした。 ただし, 重力加速度の大きさを 9.8m/s2 とし, 水平面 BC を 高さの基準にとる。 B (1) 点Aでの物体の力学的エネルギーは何Jか。 (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力)による運動では、力学的エネルギー (運動エネルギーKと位置エネルギー の和)は一定に保たれる。 すなわち K+U=一定 解答 (1) KA+UA=0+2.0×9.8×2.5=49J 2) 力学的エネルギー保存則により KB+UB=KA+UA よって 1/2×2.0×2+0=49 v²=49 ゆえにv=7.0m/s (3)(2)と同様に, K+U=KA+UA ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 なんでこの式 つかうか POINT ①運動エネルギー ②重力による位置エネルギー = 1/2m2 U=mgh ゆえに x=1.4m よって 0+1/2×50×x=49 2 49 7.02 *'-10-30.00 x2= == 25 5.02 ③弾性力による位置エネルギー =1/2/kx2

解決済み 回答数: 1
物理 高校生

(2)の問題で、最後0.49から0.70になるのが分かりません教えてください

水平面上の点Aを速さ 1.4m/sで通過する質量 1.0kg の物体がある。 平面はなめ らかだが,BC間のみあらく, 物体との間の動摩擦係数は0.15で、距離は0.50m である。 重力加速度の大きさを9.8m/s とする。 例題28 保存力以外の力が仕事をする場合 (1) 物体が BC 間を通過する間にされる仕事は何Jか。 解答 物体が点D を通過する速さは何m/s か。 (1) 鉛直方向の力のつり Nは N=1.0×9.8=9.8N 20 9.8 ハ47 011579.8 -1:47+0,50 A 8.7150 D 0.74 0.785 い 1.70m/mfx1x1.42 あいより,垂直抗力の大きさ μ'N 重力 動摩擦力の大きさfは 1.0×9.8N 「μ'N」より f=0.15×9.8=1.47N よって、物体がされる仕事 W は, 「W=-Fx」より W=-1.47×0.50 =-0.735≒-074J (3) 点Bを通過する速さを UB, 点D を通過する速さを と する。 力学的エネルギーの変化が動摩擦力のした仕事に 等しいので 1/12mo 1 2 mv mum=w 980.9 0.79 17 2 516 14 2 ×1.0×13×1.0×1.4°=-0.735 2 UD2=-1.47+1.96=9.49 よって up=0.70m/s 2mv² = 0.24142 (2) AB, CD 間はなめらかなので力学的エネルギーは保存 される物体は等速直線運動をする)。 9800 =0.29 Point 動摩擦力は負の仕事をする。そのため、力学的 エネルギーは保存されず、減少する20,48 0.98-0.735 L

解決済み 回答数: 1
物理 高校生

物理基礎の運動方程式の問題です。素朴な疑問なんですが、AがBを押す力はなぜ20Nではないのですか? 教えていただけると嬉しいです。

例題 解説動画 第Ⅰ章 運動とエネルギー m/s2 とする。 口の合力は, 基本例題 11 接触した2物体の運動 水平でなめらかな机の上に,質量がそれぞれ2.0kg, 受けたとき, 生 F2 F₁ 3.0kgの物体A,Bを接触させて置く。 Aを右向きに制 20N の力で押し続けるとき, 次の各問に答えよ。 (1) A, B の加速度の大きさはいくらか。 (2)A,Bの間でおよぼしあう力の大きさはいくらか。 指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から, 2つの物体 は,大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て, 連立させて求める。 ■解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 係数が0.60 の 。 動摩擦係数が にあるとき, 大 B けて落下して 物理 AF[N] [F[N] |a[m/s] 20N → 基本例題12 連結された物体の運動 20N 基本問題 87,96 B 向の力は,図のようになる。 運動する向きを正 とし,A,Bの加速度をα 〔m/s2] とすると,そ れぞれの運動方程式は, A: 2.0×a=20-F ... ① B:3.0×α=F 式 ①,② から, a=4.0m/s2 (2) (1)の結果を式 ② に代入すると, [И]V 3.0×4.0=F F=12N Point A, B をまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20 となり,a が 求められる。 しかし, F を求めるためには, 物 体ごとに運動方程式を立てる必要がある。 ・大 例題 基本問題 88, 92 =説動画 図のように, なめらかな水平面上に置かれた質量 M [kg] の物体Aに軽い糸をつけ、軽い滑車を通して他端に質量 M[kg] A 問題 85, 88,90

解決済み 回答数: 1
物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
物理 高校生

(2)はこのようなやり方でも合ってるんでしょうか??教えてください

例題 解説動画 基本例題29 円錐振り子 図のように、長さLの糸の一端を固定し, 他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を0, 重力加速度の大きさをg として, 次の各問に答えよ。 出した。 X(1) おもりが受ける糸の張力の大きさはいくらか。 (2)円運動の角速度と周期は,それぞれいくらか。 指針 地上で静止した観測者には, おもり は重力と糸の張力を受け, これらの合力を向心力 として,水平面内で等速円運動をするように見え る。この場合の向心力は糸の張力の水平成分であ る。 (1)では,鉛直方向の力のつりあいの式, (2) では,円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsin0 である。 解説 (1) 糸の張力の大き 基本問題 210 211 212 .00S 00 TH g m m(Lsin0) w²=mg tane w= L cose 2 Lcose =2π w 周期Tは,T= 第Ⅱ章 力学Ⅱ 別解 (2) お (2) おもりとともに 0 さをSとすると, 鉛 直方向の力のつりあ いから, Scoso S 円運動をする観測者 には、Sの水平成 と遠心力がつりあっ てみえる。 力のつり あいの式を立てると L m (L sine) w² 0 Scoso-mg=0 S=mg SsinO mg cose (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」 から, Ssin0=mgtan (2)の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=0 Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 mg

解決済み 回答数: 1