学年

教科

質問の種類

物理 高校生

気体が真空へ膨張するときなぜ仕事をしないとなるのでしょうか

図のように,栓Cが付いた細い管でつながれた二つの円筒容器 A, B がある。左の 容器 A の体積は Vo で, 右の容器 B には, なめらかに動く断面積Sのピストンが取り 付けられている。はじめ,栓Cは閉じられており,容器 A には絶対温度 To で外部と 同じ圧力 Poの気体が入っている。また, 容器Bの内部は真空であり, 体積が夢とな るようにピストンが固定されている。 ただし, 円筒容器,栓,ピストンは熱を通さ ず, 細い管の体積は無視してよいものとする。 O 0 ピストン製 S 容器 A 栓C 容器B (断面積) C Vo, To, Po Vo 1/2 真空 Poえなけれ 問1 ピストンの位置を保ったまま栓Cを開くと, 気体が容器 A, B 全体に一様に広 がった。この過程に関する記述として正しいものを二つ選べ。原千代千葉華 ① 気体は外部に対して仕事をせず, 気体の圧力は減少した。 間 Vq .> ② 気体は外部に対して仕事をせず, 気体の圧力は変化しない。 気体は外部に対して仕事をせず,気体の圧力は変化しない。標 ③ 気体は外部に対して仕事をし, 気体の圧力は減少した。 ④ 気体は外部に対して仕事をし, 気体の圧力は変化しない。 2 ⑤ 気体の温度は 1 To に下がる。 0EST @ ⑥ 気体の温度はTのまま変化しない。 3 2 ⑦ 気体の温度はTに上がる。 シリンダー ocea 083 Q 068 0

回答募集中 回答数: 0
物理 高校生

(2)の問題において、なぜ最初(Bをはなした直後)の力学的エネルギーA、Bを合わせて考えないといけないんですか?そのまま(1)で出したA、Bの値をイコールで結ぶだけじゃダメなんですか?

[リード C 基本例題 23 力学的エネルギーの保存 第5章■ 仕事と力学的エネルギー 49 104~108 解説動画 定滑車に糸をかけ, 両端に質量mおよびM (M> m) の小球 A, Bを取りつけた。 Aは水平な床に接し, Bは床からんの高さに保持 されて糸はたるみのない状態になっている。 いま, Bを静かにはな すとBは下降を始めた。 重力加速度の大きさをgとし,床を高さの 基準とする。 (1)Bが床に衝突する直前の A,Bの速さを”とする。 このとき, A, B がもつ力学的エネルギーはそれぞれいくらか。国十 72Bが床に衝突する直前の A, B の速さ”はいくらか。 2Bが床に衝突する直前のA,Bの速さ”はいくらか。 OBM m 指針 A, B には, 重力 (保存力) のほかに糸の張力 (保存力以外の力) もはたらくが, 張力が A, B にする仕事は,正, 負で相殺するので, 力学的エネルギーは保存される。 B:0+Mgh=Mgh 解答 (1)Bが衝突する直前の力学的エネルギ A:0+0=0/ ーはそれぞれ A, B をあわせて考えると、 全体の力学的 A: 2 1½ ½ mv² + 2+mgh B: 11/23 Mv² +0=Mv 0+Mgh= (2) 最初 (Bをはなした直後)の力学的 よってv= エネルギーは保存されるので =(1/12mo- mu2+mgh+1Mv2 2(M-m)gh M+m エネルギーはそれぞれ 110 解説動画

未解決 回答数: 0
物理 高校生

この問題の解き方が下の解説を読んでも理解が出来ません💦 教えてください。よろしくお願いします。

空気の抵抗は JK=0 U=mgh 例題2 ばねと力学的エネルギーの保存 軽いばねの一端を天井に固定し, 他端に質量mの物体をつるすと, ばねは自然長からだけ伸びてつり合った。 この物体を, ばねの自然長の位置まで手で持ち上げて、静かに手をはなした。 重力加速度の大きさをgとし, 重力による位置エネルギー の基準面は、ばねの自然長の位置にとるものとする。 (1)このばねのばね定数を求めよ。 (2)ばねの自然長からの伸びがxになる点を通過するときの物体の速さがであるとする。このときと手をはなした直後で, 力学的エネルギーは保存される。 力学的エネルギー保存の式を書け。 (3)つり合いの位置を通過するときの物体の速さを求めよ。 (4) 物体が最下点に達するときのばねの伸びを求めよ。 解説 (1)このばねのばね定数をkとすると,図のBのときの 物体にはたらく力のつり合いより, B mg mg = kl よって,k= -12 mul = 0 になるため (2)図のAとCについて考え,k= 0+0+0= 1 2 m² mỏ – mgx + (3) 図のCについて, x=1として,(2)の式に代入すると, mgを を代入すると, 0000000 自然長 0 mg x² 21 K=0 つり合いの U = 0 + 0 位置 kl 00000000 Beet K=1/2m02 U=-mgl+1/k12 CK=1/23 mv2 U= mgx+1/2/kx2 0=1/2m² -mv²- mgl + -mgl 2 Vo mg x さは基準 となる。 v>0, v=√gl (4)図のDについて,求めるばねの伸びをひとすると, 最下点でv = 0 だから,(2)の式に代入すると, 最下点 K = 0 U= -mgl' + kl² 0 = - mgl' + mg_ 91,2 l' ≠ 0 だから, l'=21 21

未解決 回答数: 0
物理 高校生

問6から問8が本当に分かりません。分かる方いたら解説どうかよろしくお願いします。

II 図3のように,水平な地面に建てられた高い塔がある。この塔の地面からの高さんの 位置には,小物体を水平方向に打ち出すことができる装置Sが設置されている。また, 地面上でSの射出口の真下の点から地面に沿って距離 Dだけ離れた位置に,小さい標 的Zがある。 Sから小物体Pをある速さで水平に打ち出したところ, Pは途中で地面に 落下することなく, 打ち出してから時間to後にZに到達した。 重力加速度の大きさをg 次に, SからPをある速さで水平に打ち出すと、Pは点Oから地面に沿ってだけ 離れた位置に落下した。 そこで、図4のように、再びSからPを同じ速さで水平に打ち 出し,打ち出してから時間 - to後にPの速度の水平成分のみを瞬時に変化させたところ, Pは途中で地面に落下することなくZに到達した。 2 とし、空気抵抗は無視できるものとする。 SP Va h 塔 O D Z 地面 内面 図 3 (m0m 0.0) 120=1 問5 to はいくらか。 h, g を用いて答えよ。 (0) 08.05 A[m] - 54 - > B 間 ( SP h 塔 0 45 D D 図 4 Z 地面 問6 Zに到達する直前のPの速度の鉛直成分の大きさはいくらか。 h, g を用いて答え よ。 問7 Sで打ち出してから時間 1/2t後に速度を変化させた直後のPの速度の水平成分の 大きさは,Sで打ち出したときのPの初速度の大きさの何倍か。 問8Zに到達する直前のPの速度の向きが,水平方向から45° 下向きとなる場合を考え る。この場合,Dはいくらか。 んを用いて答えよ。 - 55 -

未解決 回答数: 0