学年

教科

質問の種類

物理 高校生

3枚目の写真の緑のマーカーで囲った※Bの部分の言っていることが分からないので教えてほしいです。

64.〈ピストンで封じられた気体分子の運動〉 なめらかに動くピストンがついた容器内に質量mの単原子分子 からなる理想気体が封入されている。 ピストンおよび容器は断熱材 でできている。図に示すように x, y, z軸をとり, 容器の断面積は 一様であるとする。 次の問いに答えよ。 〔A〕 まず,ピストンが固定されており, ピストンの底部は容器の 底からんの距離にある場合を考える。 (1)容器内のある1個の気体分子を考え,そのz軸方向の速さを ひとする。分子がピストンに弾性衝突したときピストンが受 ける力積の大きさを求めよ。 (2) (1)において1個の分子がある時間 4t にピストンに衝突する回数を答えよ。 (3)(2)においてN個の分子によって 4tの間にピストンが受ける平均の力の大きさを答 えよ。ただし,気体分子全体のvzの2乗の平均 22 を用いよ。 〔B〕 次に,ピストンをz軸の負の向きにより十分に小さい一定の速さで押しこんだ 場合を考える。なお理想気体では, 内部エネルギーは各気体分子の運動エネルギーの総和 となる。 z軸方向の速さvz の1個の分子がピストンに弾性衝突した後の軸方向の分子の速さ vz を求めよ。 また,衝突前後の分子の運動エネルギーの変化量⊿u を答えよ。この際, 1± b b は十分小さいことより (10) = 0 という近似が成りたつことを用いよ。 Vz Vz Vz Vz (54)において⊿t の間のN個の分子の運動エネルギー変化の合計 4U を v22 を用いて答 えよ。 ただし, 4t の間のピストンの移動距離はんに比べて十分小さいものとする。 〔A〕のときの容器の体積を V,気体の温度を T, 内部エネルギーをひとおく。また, 4tの間の体積の変化を⊿V, 温度の変化を⊿T とする。 気体分子全体の速さ”の2乗 44 が成りたつこと の平均をとしたときが成りたつこと,また, U を用いて 4 を 4T, T を用いて表せ。 AV V 記 (7/3)で求めたを用いて、4tの間に気体がピストンにされた仕事⊿W を答えよ。 また, この結果を(5) と比較して,気体を断熱圧縮したとき,気体がされた仕事と運動エネルギ ーの関係について説明せよ。 [23 埼玉大改]

解決済み 回答数: 1
物理 高校生

この問題の(4)で(ΔB/B)^2の項は無視してるのにΔB/Bの項は無視していないのはなぜですか?

133. <ベータトロン〉 時間変化する磁場による荷電粒子の加速について考えよう。 図のように、原点Oを通り互いに直交するx軸, y 軸, z軸をと る。 AB (1) 等速円運動する荷電粒子の速さを求めよ。 2軸の正の向きに一様で時間変化しない磁場が加えられてお り,その磁束密度の大きさをBとする。この磁場中に質量 m, 電荷 g (>0) の荷電粒子を入射したところ,xy 平面上で原点O を中心とする半径rの等速円運動をした。 y m x v 荷電粒子の円運動は,半径rの円形コイルを流れる電流とみなすことができ,円形コイル を貫く磁束はBで与えられる。このことを用いて, 磁場を時間変化させたときの荷電粒 子の運動について考える。ただし,この電流がつくる磁場は無視できるとする。円形コイル 内部と円形コイル上の磁束密度の大きさを時間とともに一様に増加させる。増加を開始して から微小時間 ⊿t 経過したとき,磁束密度の大きさは微小量⊿B (>0) だけ増加した。 なお、 (4)(5)では2つ以上の微小量どうしの積は無視して計算すること。 (2) 円形コイルに誘導される電場の大きさを求めよ。 闘 (3) 誘導された電場により荷電粒子の速さは増加する。 その理由を述べ, 速さの微小な増加 量⊿v を求めよ。 *(4)磁場の増加により円運動の半径は変わらないと仮定して,荷電粒子にはたらくローレン ッカの大きさと遠心力の大きさを計算し,ローレンツ力は遠心力より大きいことを示せ。 したがって,磁束密度を一様に増加させると軌道が円からずれる。 元の円軌道を保つには, 磁束密度の増加量を一様ではなくすればよい。 このとき,円形コイル内部の磁束密度の大き さの平均値をĒとすると,円形コイルを貫く磁束は2万で与えられる。微小時間⊿t経過 する間に, Bを微小量 4B 増加させ, 円形コイル上の磁束密度の大きさを⊿B'増加させたと ころ,もとの円軌道が保たれた。だだし、磁束密度の大きさはz軸からの距離と時間だけに 依存するものとする。 (8) AB4B' の比 AB AB' を求めよ。 〔22 大阪公立大〕

解決済み 回答数: 1
物理 高校生

(3)の三枚目の写真のR’-Rの式がよく分かりません

At t であ 物理 問題Ⅱ 図1のような長さL. 断面積 S, 抵抗値Rの抵抗体 X を考える。この抵抗体Xの左 右の端に大きさVの電圧をかけたとき、抵抗体Xの内部には一様な電場(電界) が生じ るものとする。 自由電子は電場から力を受けて一定の加速度で運動し、抵抗体X内の イオンなどと衝突し、 いったん静止する。 この衝突が一定の時間間隔で繰り返し起こ ると仮定すると、 自由電子の速さは時刻に対して図2のように変化する。 自由電子1個 の質量を電気量e (e>0) 抵抗体Xの単位体積に含まれる自由電子の個数を とする。 S 抵抗体 X 図 1 L 設問(1) 以下の文章が正しい記述になるように, (あ~か)に入る適切な数式をL.S.V. em,n, Tのうち必要なものを用いて表せ。 ( 抵抗体 Xの内部に生じる電場の強さは の大きさは (あ) なので,自由電子の加速度 であり自由電子の平均の速さは (う) 一方、この抵抗体Xの断面を時間の間に通過する自由電子の数は xv4t なので、この抵抗体 X を流れる電流の大きさは したがって, 抵抗体 X の抵抗率は (カ) となる。 である。 (え) (お) xvとなる。 この抵抗体 X に力を加えると,長さはL+4L (4L>0) になり, 断面積はS-AS (4S>0) になった。 この変形において、抵抗体 X の抵抗率は変化しないものとする。 ただし, LAL, S4Sとし, 1>|x|のとき (1+x)=1+pxの近似式を用い,また,微 小量どうしの積を無視するものとする。 設問(2) 抵抗体 X の長さがL+4L, 断面積がS-4Sのときの抵抗値R' を R, L, 4L, S, 4S を用いて表せ。 設問(3) 力が加わり変形しても抵抗体 X の体積が変化しないものとして, R'-R を R, L, 4L を用いて表せ。 速さ ・時刻 T 2T 3T 図2

解決済み 回答数: 2
物理 高校生

屈折率の変化は位相の変化に影響するけど、屈折では変化しないってどういうことですか?🤔

1.30-0.50 0.80 1.00-0.50 0.50-1.6 なお,各式を利用して数値計算すると, "=4.9m/s, ex=0.80, en=0.50 と求めることができる。 問5 順次、 検討する。 5 の答 ⑥ ①:光の速さはどんな媒質中よりも真空中が一番大きい(連 い)。 よって、 ①は正しい。 ②: 凸レンズの焦点距離を凸レンズと物体の距離をと し、実像の位置を作図する。 物体 焦点 a-f 凸レンズ 焦点 光軸・ 実像 この図より, a-ff, すなわち α>2f のとき, 物体より実 像の方が小さい。 よって, ②は誤っている。 ③:光の位相は反射で変化する場合があるが, 屈折で変化する ことはない。 よって, ③は正しい。 ④:光は,電場と磁場が進行方向に対して垂直に振動する波な ので横波である。 横波なので、一つの方向にだけ振動する偏光を つくることができる。 よって、④は正しい。 ⑤:光の分散は, 波長によって屈折率がわずかに異なることに よって生じる現象である。 雨上がりに虹が見えるのは、空中の水 滴によって光が屈折するときに分散が起こるからである。 よっ て, ⑤は正しい。 ⑥ : 可視光線は波長が短い順に, 紫色光, 青色光, ..., 橙色光, 赤色光となっている。 よって, ⑥は正しい。 2問 円運動 6 の答② 口

解決済み 回答数: 1