学年

教科

質問の種類

物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

250回目の最小値をとったときにHとBの距離はなぜLA+2ΔLになるのですか? 最小値が4Δlごとにあらわれるのが分かりません💦

<tttttt EXI 図2 一光線の空 リットが きいと 率力の れは子供 改 354 マイケルソン干渉計 Sを出た波長入の単色光が,Sから距離 Ls にある [兵庫県大 改] 347 図のように,光源 鏡 A LA 鏡B 半透鏡 H -22- ←Ls -LB- AL AL LD 検出器 D 半透鏡Hにより上方への反射光と右方への透過光 光源 S 2つに分けられる。 反射光は,Hから距離 LA に固 定された鏡Aで反射して同じ経路をもどり、一部が Hを透過してHから距離LD 離れた検出器Dに到達 する。一方, Sを出てHを右方へ透過した光は,鏡 Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離はLB (LB> LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 )Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, 4Lだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し、初めの位置から4Lだけ動いたとき最小となった。 波長を4Lで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し, +4のとき最大となった。 LB-LAを入と 4入で表せ。 (3) 次に, 光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入との比を求め [16 新潟大 改] よ。 ヒント 353(2)隣りあう2つのスリットを通る光の経路差= | (回折後の経路差)-(入射前の経路差)| 354 (3)250回目の最小値をとったときの,HとBの距離はLA +24Lであり、最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

(2)で問題文の言ってる意味が分かりません、、、どなたか教えてください😭

図1は、x軸上を正の向きに進む正弦波の先頭がx=0.40mの点にき た瞬間の位置 〔m] での変位y [m] を表している。 この時刻を t=0 s とする。r=0.60 m の点には波が固定端反射をする壁がある。 図2は, 軸上を正の向きに進む正弦波 (合成波ではない) のある位置での時 刻と変位の関係を表したグラフである。 y[m]A 0.01 壁 0.4 0.6 -0.01- x(m) 図 1 (1) この正弦波の波長入 〔m〕, 周期 T〔s], 振動数f [Hz], 進む速さ v [m/s] を求めよ。 y [m] (3) t=0.30s での合成波の波形を作図せよ。 (2) この正弦波が図2のように振動する位置xを,0m≦x≦0.40m の範囲ですべて求めよ。 0.01 0.2 -0.01 t(s) 図 2 ココを間違う! 波が形を保って平行移動して進むのを見ると媒質が波と一緒に進んでいると勘違いしてしまい がちだが,媒質は各位置に留まったまま方向に振動しているだけであることに注意しよう。 各位置での振動のようすは, 進行する向きに波を少しだけ平行移動させてみるとわかる。 解答例 (1) 図1より波長入=0.40m, 図2より周期 T = 0.20s である。(答)〔m〕 振動数f [Hz] と速さ” [m/s] は 固定端 入 0.01 1 1 = = 5.0 [Hz] () T 0.20 v=fl = 5.0 x 0.40=2.0[m/s] (2) 図1の波をx軸の正の向きに少し平行移動させると,図アの破 線のようになり, t=0s の直後に媒質がどの向きに動くのかがわか る。ココ よって、図2のようにt=0sの直後に y=0m から y 軸 の正の向きに媒質が動く点は, x=0mとx=0.40m である。 ... (答) -0.01 ... ・・・ (答) 0.4 0.6 〔m〕 -0.01 図ア y [m] T 0.01 0 0.1 70.2 t(s) 図イ

回答募集中 回答数: 0
物理 高校生

線を引いたところで飛行機に対して平行な方向へ投げたら相対速度と実際の速度は変わりますか? また最後の問いの時はY軸方向の初速度が50だからずっと50m/sということで合っていますか?

第1問 図1のように、水平な地表面上に軸と y軸を設定する。軸と軸は直交している。飛 行機がy軸の上方490mを速さ50m/sで y 軸正 の向きへ水平に飛んでいる。 この飛行機が xy 座 標の原点 0 の真上 (鉛直上方) を通過した瞬間に 小球を投げ出す場合を考える。 空気抵抗は無視で きるものとし、重力加速度の大きさを 9.8m/s2と して以下の問いに答えよ。 数値については,有効 数字2桁で答えること。 高さ490m 速さ 50m/s 図 1 → 小球を水平方向に投げ出すとする。 飛行機に対する小球の速度をある向きである大きさに したら, 小球が原点0に落下した。 (2) 問1 小球を投げ出す速度 (飛行機からみた速度)の大きさと向きを答えよ。 向きを答える には,どの軸の正負どちら向きかを答えること。 問2 小球が投げ出されてから地表に達するまでにかかる時間を求めよ。 (T) 次は,小球を飛行機に対して速さ4.9m/sでæ軸正の向きに投げ出した場合を考える。 問3 落下地点のæ, y 座標をそれぞれ求めよ。 (31) 今度は,小球を飛行機から見て真下向き (飛行機に対する相対速度が鉛直下向き)に速さ 49m/sで投げ出した場合を考える。 問4 落下地点のæ, y 座標をそれぞれ求めよ。

回答募集中 回答数: 0
物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0
物理 高校生

問3についてです。 容器の中の空気の圧力が回答をみると図35-3では下向きに図35-4では上向きになってたりしてる理由を教えてほしいです。

*第35問 次の文章を読み, 下の問い (問1~3)に答えよ。 (配点 12 18分 れ、底面を上にして静かに手を離すと, 図1のように, 円筒中の水面が外部の水 より少し下がった状態で,鉛直に静止した。 外部の大気圧をPo, 水の密度を 一端を閉じた質量M, 断面積Sの円筒を,内部に少し空気が残るように水中に入 力加速度の大きさを」とする。円筒は熱を通さず、円筒の厚さは無視できるもの する。また,円筒内部の空気は、常に水温と同じ温度であるとし,その質量は に比べて十分小さく無視できるものとする。 DISO OST 大気圧 Po 質量 M, 断面積 S 問2 水温を測定したところ15℃であり、円筒内の気柱の高さはだった。その状 態から,水温を43℃まで上げた。 このとき気柱の高さはの何倍になるか。 最も適当な数値を,次の①~⑥のうちから一つ選べ。ただし、外部の大気圧 はPo. 水の密度はpのままであるとし、水の蒸発は考えないものとする。 2 倍 ① 0.3 ② 0.9 ③ 1.1 ④ 1.5 ⑤ 2.2 ⑥ 2.9 問3次に,図2のように円筒を鉛直に保ったまま引き上げると,円筒内の水面は 外部の水面からんの高さまで上がった。 このとき,手が円筒を上向きに支えて いる力の大きさを表す式として正しいものを、下の①~⑥のうちから一つ選べ。 3 p 図 1 Po h 問1 円筒の内部の空気の圧力を表す式として正しいものを次の①~⑥のうち から一つ選べ。 1 第2章 熱と気体 ①Po- Mg S ②Po Mg ③Pos ④ PS - Mg 図 2 ⑤ PS PS + Mg 3 Mg-pShg ② Mg ① Mg + pShg ④ Mg + pShg + PoS ⑤ Mg + PS ⑥ MgpShg + PS

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0