学年

教科

質問の種類

物理 高校生

この問題の問4、問5が分かりません。 答えと解説、両方ともお願いしたいです。

2 軽くてなめらかに動くことのできるピストンの付いたシリンダーを考える。 以下の問いに答え よ。 なお、解答用紙には答えに至る説明あるいは計算過程も記述せよ。 ( 60点 ) 問1.はじめはピストンが固定され、図のようにシリンダー内が薄い仕切り板により体積 1/3V[m²) および 1/2 V[m])に区切られているものとする。 体積 1/32V[m]の部分には温度 [K] 圧力 3P [Pa〕の単原子分子理想気体が入れられており,もう一方の部分は真空状態になっている。 この状態から内部の気体がピストンの外に出ないように仕切り板を静かに取り外し、 十分時 間が経った後の状態を状態 A とする。 状態 A の気体の圧力を求め, V, TP のうち必要な ものを用いて表せ。なお、この過程においてシリンダー内の気体は断熱状態に置かれている ものとする。 3P'v=Q+ 3 13 3 3P. T 真空 E PV 状態 Aの気体に対して,ピストンを固定したまま熱量 Q, [J] を加えたところ、 気体の圧力が上 昇した。 この状態を状態Bとする。 次に, 状態Bからピストンの固定を外し、 気体の温度を一定 に保ったまま, 気体の体積が2V[m²〕になるまでゆっくりと膨張させた。 気体が膨張した後の状 態を状態C とする。 ここで状態Cの圧力は状態 Aの圧力よりも大きかった。 その後,状態Cか ら気体の体積を保ったまま、 気体の圧力を状態 Aと同じにした。 この状態を状態Dとする。 最 後に,状態Dから気体の圧力を保ったまま、 気体の体積を状態 Aの体積まで圧縮した。 問2. 状態 B の気体の圧力を求め, V, P, Q」 を用いて表せ。 問3. 状態Cの気体の圧力を求め, V, P, Q を用いて表せ。 問4. A→B→C→D→Aの一連の過程を熱機関のサイクルとみなしたとき,このサイクルに おいて気体が外部に対して正負にかかわらずゼロではない仕事をした過程はどこか。 対応す る過程を下記の(a)~(d)から全て選択し, 解答欄の所定の場所に記入せよ。 また, 過程B→C において気体に加えられた熱量を Q2[J]としたとき, サイクル全体で気体が外部にした仕事 の総和を求め,V, P. Q2 を用いて表せ。 (a) A-B (b) B-C +Q 2V (c) C-D (d) D-A 7. 問5. 問4のサイクルにおける熱効率を求め, V, P. Q, Q2 を用いて表せ。 ご PV @a,+PV. 3 2 Q,+P EV

回答募集中 回答数: 0
物理 高校生

この問題の(3)がよく理解できません。詳しく解説して欲しいです。お願いしますm(_ _)m

0 の位置 の位置 x〔m〕 が経過 形 基本例題 32 定在波(定常波) 153,154 解説動画 x軸上を要素の等しい2つの正弦波 a, b が,互いに逆向きに進んで重 なりあい、定在波が生じている。 図には, 波 a, 波 b が単独で存在したときの,時刻 t=0s における波a (実線)と波b (破線) が示してある。波の速さは2.0cm/sである。 (1) 図の瞬間(t=0s) の合成波の波形をかけ。 (2) 定在波の腹の位置x を 0≦x≦4.0(cm) ↑y[cm] a の範囲ですべて求めよ。 0 12 13 4 x[cm] (3) t=0s の後,腹の位置の変位の大きさが 最大になる最初の時刻を求めよ。 -1 -2 指針 定在波では,まったく振動しない所(節)と大きく振動する所 (腹)が交互に並ぶ。 解答 波波bの波長 入=4.0cm 周期 T=_4.0 =2.0S V 2.0 (1) 波の重ねあわせによって 図1 Ay[cm] 2 1 0 a 合成波 4 |x〔cm〕 x〔m〕 波形を示す (2) 図1の合成波の波形で、変位の大きさが最大 となる位置が腹の位置。 -1 -2 図1(t=0) ↑y[cm] 合成波 6.0 t[s] 振動を示す x=1.5cm, 3.5cm 8 (3) t=0s (図1の状態)の後,波 a,波bが 1/3 ずつ進むと、図2のように, 山と山(谷と谷) が重なり,腹の位置での変位の大きさは最大 になる。 進む時間はTだから 1=1/21=20-1 -= 0.25s 8 2 11 O 13 4 x[cm] -1 -2 図2(t=1/27)

回答募集中 回答数: 0
物理 高校生

1番の問題で写真のような解き方をしてはいけないのはなぜですか?はやめに教えてくれると有難いです🙏🏻

基本例題 40 万有引力による位置エネルギー 203,204 解説動画 地球の表面から速さで鉛直上方に物体を発射したとき, 到達する最大の 高さんを考える。 地球の半径をR, 地球上での重力加速度の大きさをg とする。 (1) 万有引力による位置エネルギーを考え, vo をg, R, hで表せ。 Vo (2)がRに比べて十分に小さいときはどのように表されるか。 iR (3)v を大きくすると, 物体は地球上にもどらなくなる。 このとき, ではいくら以上にすればよいか。 g, R で表せ。 指針 万有引力定数G, 地球の質量Mが問題文に与えられていないので, 「GM=gR2」を用いて g, Rで表す。 解答 (1) 物体の質量をmとする。 力学的エネルギー保存則より 2+ 2 mv²+(-GMm)=0+(-G Mm R RIT) (G: 万有引力定数,M: 地球の質量) 12/3m mvoz = = GMm GMm GMm R R+h R GMm R+h-R GMm h = 1 = = R R+h R R+h R R+h ここでGM=gR2 より 12mv=gR2.m h 2gRh よって No = R R+h R+h (2)んがRに比べて十分に小さいとき, 720 より (3) 地球上にもどらないようにするには,んが無限遠であればよい。 2gRh 2gh ≒0 vo=v R+h = ≒√2gh h 1+. R このとき, A = 0 より R h 2gRh 2gR Vo= = VR+h ≒√2gR R +1 h

回答募集中 回答数: 0