学年

教科

質問の種類

物理 高校生

物理ばねのつりあいについてです (2)の解説にある「x=8.0×10-²」とはどういうことでしょうか?;;

入し 57. 重さと質量 地球上の重力加速度の大きさを9.8m/s2 とし, 月面上の重力加速度の 大きさを地球上の であるとして,次の各問に答えよ。 (1) 地球上での重さが294N の物体の質量はいくらか。 (2) (1)の物体が月面上にあるとき, その質量はいくらか。 (3) (1)の物体が月面上にあるとき, その重さはいくらか。 [知識] 58. 糸の張力図のように, 質量 1.0kgのおもりを天井から糸でつるし て静止させた。このとき, おもりが受ける糸の張力の大きさはいくらか。 ただし,重力加速度の大きさを9.8m/s2 とする。 例題 8 > MOE 60. ばねのつりあい表は, 軽いばねにさまざまな質量の おもりをつるし,ばねの自然の長さからの伸びを記録した ものである。 重力加速度の大きさを9.8m/s2として,次の 各問に答えよ。 (1) 自然の長さからのばねの伸びx [m] を横軸に, ばねの [弾性力 F〔N〕 を縦軸にとったグラフを描け。 1310 (2) グラフから, ばねのばね定数を求めよ。 [知識] 59. ばねの弾性力 自然の長さ 0.200mの軽いばねに, 40Nの力を加えて伸ばすと,長 さが0.240mになった。 重力加速度の大きさを9.8m/s2 として,次の各問に答えよ。 (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ばねの長さはいくらになるか。 ヒント ばねの弾性力の大きさは, ばねの伸びに比例する。 F₁ sto(s) () NA F All 61. 力の合成と成分 図(a), (i) の xy 十面上における力上 〜 F について,次の各問に 答えよ。 14.0N 01.0kg 8.0 (1) 豆~下の成分, y成分をそれぞれ求めよ。 (2) 図(a), (b)について, 3つの力の合力のx成分, y成分をそれぞれ求めよ。 (3) 図(a), (b)について, 3つの力の合力の大きさをそれぞれ求めよ。 SUCORE.CO XOLOS. (a) (b) NA おもりの自然の長さから 質量〔g〕 の伸び〔cm〕 100 2.0 200 4.0 300 6.0 400 例題8 14.0N 第Ⅰ章 運動とエネルギー [n]として, つりあいの式を立てると 1.0×10²×x-5.0×9.8=0 ばねの長さは, . ばねのつりあい 0.200+0.049=0.249m x = 0.049m 答 (1) 解説を参照 (2) 49N/m につるしたおもりが受ける重力と弾性力は、つりあってい時 フックの法則 「F=kx」 から, F-xグラフの傾きは、 ばね定数に相 することがわかる。 説 (1) おもりが受ける重力と弾性力は, つりあっている。し たがって,弾性力の大きさFは,重力の大きさ 「W=mg」 から求め られる。 2.0N 100gのおもり: F=0.100×9.8=0.98N 200gのおもり: F=0.200×9.8=1.96N 300gのおもり: F=0.300×9.8=2.94N 400gのおもり: F=0.400×9.8=3.92N 2.9N 3.9N 表で与えられているばねの伸びはcmなので,これをmに換算し, グ ラフは図のようになる 01. の合成と成方 (2) フックの法則 「F=kx」 から, ばね定数はF-xグラフの傾きに相 当する。 x = 8.0×10mのとき, F=3.9N と読み取れるので, 3.9=k×8.0×10-2 k=48.75N/m 49 N/m (1) F₁-(ON, 4.0N), F₂=(-1.0N, ON) F= (4.0N, ON), F=(2.0N, 3.5N) 成分は, F(N) Just Fay=4.0sin60°=4.0x- 4.0 3.0 2.0 1.0 F=(-6.0N, ON), F=(2.0N, ON) (2) (a) x 3.0N, y: 4.0N (b) x -2.0N, y: 3.5N (3) (a) 5.0N (b) 4.0N 指針 それぞれの力の成分は, 図から読み取り, 三角比などを用いて 求める。 合力のx成分,y成分は,各力のx成分, y成分の和に等しい。 また, 合力の大きさは, 三平方の定理 「F=√F2+F」 から求める。 解説 (1) 1~F3,F's, Feの成分は,図から読み取る。 1 2 の成分は, Fax=4.0cos60°= 4.0 x = = 2.0N √3 2 0 =20√3=2.0×1.73=3.46 -3.5N (2) 図 (a)における合力のx成分は, Fx=0+(-1.0)+4.0=3.0N 成分は, Fy=4.0+0+0=4.0N 図(b) における合力のx成分は, Fx=2.0+ (-6.0)+2.0=-2.0N 成分は, Fy=2.0√3+0+0=3.46 3.5N (3) (2) の結果から, 三平方の定理を用いると, 図(a):√3.02+4.02 = 5.0N 図(b):2.02+(2.0√3)=4.0N 別 直角三 比を を求 bas 4. 4

回答募集中 回答数: 0
物理 高校生

以前にも質問させていただきました。 写真についてですが、この導体棒が回路に繋がれていない時は、ローレンツ力と静電気力が釣り合っていて、この導体棒を回路に繋ぐとP→Qに向かって電子が流れますが、この現象の理解にあたって、「物体が置いてあるテーブルを引き抜くと、(垂直効力がなく... 続きを読む

V=vBlのルーツをさぐってみよう。導体棒をvで動かすと,中の自由電 子は P→Qの向きのローレンツ力 evB を受けて移動し(図a), Q端に集ま る。 一方, P端では電子がいなくなって + が顔を出す。 この +, - が P→Qの向きに電場Eをつくり、残りの 自由電子は evBとは逆向きの静電気力 FeEを受ける。電子の移動とともにEが 増し, やがて eE=evB となって力がつ り合うと,電子の移動は止む(とは言え, アッという間のできごと)。E=vBが電 場の最終値だ。 PQ間の電位差はV=El=vBl で P が高電位側なので図cのような電池に なっている。 図 a 図b 図 C ローレンツ力と要場の2つの力を 受ける P P 高電位 電流が流れる 電磁力 磁場中で 荷電粒子が動くローレンツカ 誘導起電力 金属棒が動く BA eE V evB evB Q 低電位 F=IBU f=guB V=vBl (いずれも垂直成分が命) ちょっと一言 ローレンツ力が電磁力と誘導起電力の原因になっているという認 識も大切。 磁気ではいろいろな量の向きの決め方が登場したが,電流がつくる 磁場は右ねじで,電磁力, ローレンツ力は1つの方法 (たとえば左手) すいしょう で扱える。 誘導起電力は右ねじが推奨法。

回答募集中 回答数: 0
物理 高校生

物理の問題です 特に苦手な電流なのでお時間ある方教えて下さると嬉しいです。よろしくお願いします(><)

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 At の間に導線の断面 A を通じて運ばれる電荷の大きさAQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 (2) 導線を流れる電流の大きさを、 S, n, e, 0, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 (すなわち、 銅 1mol あたり 64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量m を求めなさい。 (5) 銅 1.0m²に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度 n を求めなさい。 (7) を求めなさい。 ただし、 e = 1.6 x 10-19C である。 10 S 1₁ 1₁ 図1 ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、 図1のように、 電流 I 〜 Is と推定することができる。 対称性から、 B点、 E点 H点の電位は? すると、 Is が求まり、I2がIⅠ を用いて、 また、 Is が I を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、 L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R =V/Iが求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、A点、 B点でキルヒホッフの第1法則、 閉回路BCFE でキルヒホッフの第2法則を用い、 電流 In, In, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 I A D 47 図2 E 40 11 P

回答募集中 回答数: 0
物理 高校生

物理の課題です(><) 1番だけでもすごく助かります! 特にこの単元は電流で苦手なところなので、時間のある方、教えていただけると嬉しいです。

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 t の間に導線の断面 A を通じて運ばれる電荷の大きさ AQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 S (2) 導線を流れる電流の大きさを、 S, n, e, v, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、 流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 ( すなわち、 銅 1mol あたり64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量 m を求めなさい。 (5) 銅 1.0m² に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度を求めなさい。 (7) v を求めなさい。 ただし、 e = 1.6 x 10-19C である。 図1 P A D 図2 B ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、図1のように、 電流 ~ Is と推定することができる。 対称性から、B点、 E点 H点の電位は? すると、 Is が求まり、 I が I を用いて、 また、 Is が I4 を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R = V/I が求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、 A点 B点でキルヒホッフの第1法則、 閉回路 BCFE でキルヒホッフの第2法則を用い、 電流 I, I2, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 V 1 F ▬

回答募集中 回答数: 0