学年

教科

質問の種類

物理 高校生

物理ばねのつりあいについてです (2)の解説にある「x=8.0×10-²」とはどういうことでしょうか?;;

入し 57. 重さと質量 地球上の重力加速度の大きさを9.8m/s2 とし, 月面上の重力加速度の 大きさを地球上の であるとして,次の各問に答えよ。 (1) 地球上での重さが294N の物体の質量はいくらか。 (2) (1)の物体が月面上にあるとき, その質量はいくらか。 (3) (1)の物体が月面上にあるとき, その重さはいくらか。 [知識] 58. 糸の張力図のように, 質量 1.0kgのおもりを天井から糸でつるし て静止させた。このとき, おもりが受ける糸の張力の大きさはいくらか。 ただし,重力加速度の大きさを9.8m/s2 とする。 例題 8 > MOE 60. ばねのつりあい表は, 軽いばねにさまざまな質量の おもりをつるし,ばねの自然の長さからの伸びを記録した ものである。 重力加速度の大きさを9.8m/s2として,次の 各問に答えよ。 (1) 自然の長さからのばねの伸びx [m] を横軸に, ばねの [弾性力 F〔N〕 を縦軸にとったグラフを描け。 1310 (2) グラフから, ばねのばね定数を求めよ。 [知識] 59. ばねの弾性力 自然の長さ 0.200mの軽いばねに, 40Nの力を加えて伸ばすと,長 さが0.240mになった。 重力加速度の大きさを9.8m/s2 として,次の各問に答えよ。 (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ばねの長さはいくらになるか。 ヒント ばねの弾性力の大きさは, ばねの伸びに比例する。 F₁ sto(s) () NA F All 61. 力の合成と成分 図(a), (i) の xy 十面上における力上 〜 F について,次の各問に 答えよ。 14.0N 01.0kg 8.0 (1) 豆~下の成分, y成分をそれぞれ求めよ。 (2) 図(a), (b)について, 3つの力の合力のx成分, y成分をそれぞれ求めよ。 (3) 図(a), (b)について, 3つの力の合力の大きさをそれぞれ求めよ。 SUCORE.CO XOLOS. (a) (b) NA おもりの自然の長さから 質量〔g〕 の伸び〔cm〕 100 2.0 200 4.0 300 6.0 400 例題8 14.0N 第Ⅰ章 運動とエネルギー [n]として, つりあいの式を立てると 1.0×10²×x-5.0×9.8=0 ばねの長さは, . ばねのつりあい 0.200+0.049=0.249m x = 0.049m 答 (1) 解説を参照 (2) 49N/m につるしたおもりが受ける重力と弾性力は、つりあってい時 フックの法則 「F=kx」 から, F-xグラフの傾きは、 ばね定数に相 することがわかる。 説 (1) おもりが受ける重力と弾性力は, つりあっている。し たがって,弾性力の大きさFは,重力の大きさ 「W=mg」 から求め られる。 2.0N 100gのおもり: F=0.100×9.8=0.98N 200gのおもり: F=0.200×9.8=1.96N 300gのおもり: F=0.300×9.8=2.94N 400gのおもり: F=0.400×9.8=3.92N 2.9N 3.9N 表で与えられているばねの伸びはcmなので,これをmに換算し, グ ラフは図のようになる 01. の合成と成方 (2) フックの法則 「F=kx」 から, ばね定数はF-xグラフの傾きに相 当する。 x = 8.0×10mのとき, F=3.9N と読み取れるので, 3.9=k×8.0×10-2 k=48.75N/m 49 N/m (1) F₁-(ON, 4.0N), F₂=(-1.0N, ON) F= (4.0N, ON), F=(2.0N, 3.5N) 成分は, F(N) Just Fay=4.0sin60°=4.0x- 4.0 3.0 2.0 1.0 F=(-6.0N, ON), F=(2.0N, ON) (2) (a) x 3.0N, y: 4.0N (b) x -2.0N, y: 3.5N (3) (a) 5.0N (b) 4.0N 指針 それぞれの力の成分は, 図から読み取り, 三角比などを用いて 求める。 合力のx成分,y成分は,各力のx成分, y成分の和に等しい。 また, 合力の大きさは, 三平方の定理 「F=√F2+F」 から求める。 解説 (1) 1~F3,F's, Feの成分は,図から読み取る。 1 2 の成分は, Fax=4.0cos60°= 4.0 x = = 2.0N √3 2 0 =20√3=2.0×1.73=3.46 -3.5N (2) 図 (a)における合力のx成分は, Fx=0+(-1.0)+4.0=3.0N 成分は, Fy=4.0+0+0=4.0N 図(b) における合力のx成分は, Fx=2.0+ (-6.0)+2.0=-2.0N 成分は, Fy=2.0√3+0+0=3.46 3.5N (3) (2) の結果から, 三平方の定理を用いると, 図(a):√3.02+4.02 = 5.0N 図(b):2.02+(2.0√3)=4.0N 別 直角三 比を を求 bas 4. 4

回答募集中 回答数: 0
物理 高校生

以前にも質問させていただきました。 写真についてですが、この導体棒が回路に繋がれていない時は、ローレンツ力と静電気力が釣り合っていて、この導体棒を回路に繋ぐとP→Qに向かって電子が流れますが、この現象の理解にあたって、「物体が置いてあるテーブルを引き抜くと、(垂直効力がなく... 続きを読む

V=vBlのルーツをさぐってみよう。導体棒をvで動かすと,中の自由電 子は P→Qの向きのローレンツ力 evB を受けて移動し(図a), Q端に集ま る。 一方, P端では電子がいなくなって + が顔を出す。 この +, - が P→Qの向きに電場Eをつくり、残りの 自由電子は evBとは逆向きの静電気力 FeEを受ける。電子の移動とともにEが 増し, やがて eE=evB となって力がつ り合うと,電子の移動は止む(とは言え, アッという間のできごと)。E=vBが電 場の最終値だ。 PQ間の電位差はV=El=vBl で P が高電位側なので図cのような電池に なっている。 図 a 図b 図 C ローレンツ力と要場の2つの力を 受ける P P 高電位 電流が流れる 電磁力 磁場中で 荷電粒子が動くローレンツカ 誘導起電力 金属棒が動く BA eE V evB evB Q 低電位 F=IBU f=guB V=vBl (いずれも垂直成分が命) ちょっと一言 ローレンツ力が電磁力と誘導起電力の原因になっているという認 識も大切。 磁気ではいろいろな量の向きの決め方が登場したが,電流がつくる 磁場は右ねじで,電磁力, ローレンツ力は1つの方法 (たとえば左手) すいしょう で扱える。 誘導起電力は右ねじが推奨法。

回答募集中 回答数: 0
物理 高校生

物理重要問題集より単振動です 写真の4).5)青線部分の2はどこからでてきたのですか? 教えて欲しいです

A 必解 52. <2本のばねによる単振動〉 図のように,なめらかな水平面上に質量mの物体Pが同 じばね定数んをもった2つのばね A, B とばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりaだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。 時刻 t=0 において、物体Pはちょうど x座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 時刻t における物体Pの位置xおよび速度を等速円運動の角速度を用いて表せ。 (2) 時刻t において物体Pが位置xにあるときの加速度αを, ω と x を用いて表せ。また,2 つのばねAとBから受ける力Fを, kとxを用いて表せ。 B 1000 P P800000 120 (3) 物体Pが x = α に達してから, 初めて原点を通過するまでの時間 to と, 初めて x 12/24を通過するまでの時間を,kとmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 FELS ULL Pの位置エネルギーUの最大値とそのときの位置を表せ。ただし,ωやTを用いないこと。 pl (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に,xを横軸にと ってグラフに示せ。このとき座標軸との交点を,a,kおよびm を用いて表せ。 また,物 体Pが時間とともに図上をたどる向きを矢印で表せ。 [香川大 改〕

未解決 回答数: 1
物理 高校生

写真は誘導起電力がvblと表されることについての説明なのですが、赤線部に「電子の移動は止む」と書かれていますが、電子の移動が止むということは電流が流れていないことと同じだと思うのですが、 なぜ電子(流)の流れが止むのに、誘導起電力は生じるのですか?電圧がかかっていることと電... 続きを読む

V=vBlのルーツをさぐってみよう。導体棒をvで動かすと,中の自由電 子は P→Qの向きのローレンツ力 evB を受けて移動し(図a), Q端に集ま る。 一方, P端では電子がいなくなって + が顔を出す。 この +, - が P→Qの向きに電場Eをつくり、残りの 自由電子は evBとは逆向きの静電気力 FeEを受ける。電子の移動とともにEが 増し、やがてeE = evBとなって力がつ り合うと,電子の移動は止む(とは言え, アッという間のできごと)。E=vBが電 場の最終値だ。 PQ間の電位差はV=El=vBl で P が高電位側なので図cのような電池に なっている。 図 a 図b 図 C ローレンツ力と要場の2つの力を 受ける P P 高電位 BA eE V evB evB Q 低電位 電流が流れる 電磁力 F=IBU 磁場中で 荷電粒子が動くローレンツカ f=qvB 誘導起電力 V=vBl (いずれも垂直成分が命) 金属棒が動く ちょっと一言 ローレンツ力が電磁力と誘導起電力の原因になっているという認 識も大切。 磁気ではいろいろな量の向きの決め方が登場したが,電流がつくる 磁場は右ねじで,電磁力, ローレンツ力は1つの方法 (たとえば左手) すいしょう で扱える。 誘導起電力は右ねじが推奨法。

未解決 回答数: 1