学年

教科

質問の種類

物理 高校生

物理基礎の力のつりあいの問題です。2/Tとなるのはなぜですか??? どなたか教えてください!

基本例題8 力のつりあい 軽い糸の一端を天井につけ, 他端に重さ 2.0Nの小球 をつなぐ。 この小球に, ばね定数 10N/mの軽いばねの 一端を取りつけ, 他端を水平方向に静かに引いた。糸が 鉛直方向と 60°の角をなして小球が静止しているとき, ばねの自然の長さからの伸びは何mか。 Top ■ 指針 小球は,重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。ばねの弾性力をF〔N〕, 糸の張力をT〔N〕と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し,各方向におけ る力のつりあいの式を立てる。これからFを求め, フックの法則を利用してばねの伸びを求める。 ■ 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T〔N〕 √√3. -T [N] 30° T 2 $1 -〔N〕 2.0N F〔N〕 31822 →基本問題 62,63,68,69,70,71,7 水平方向 : F- x= 60° √√3 2 鉛直方向: -2.0=0 T 2 = 2.0N 10N/m -T = 0 ... ① ...2 式 ② から, T 4.0Nとなり,これを式①に代入 て F を求めると, F=2.0√3N ばねの伸びを x 〔m〕 とすると, フックの法則 「F=kx」から, F 2.0√3 2.0×1.73 k 10 10 = 100000- = 0.346m 0.35m Point 問題文の「軽い」とは、質量が無視でき ることを意味しており、「軽い糸」 「軽いばね」 のように用いられる。

回答募集中 回答数: 0
物理 高校生

物理ばねのつりあいについてです (2)の解説にある「x=8.0×10-²」とはどういうことでしょうか?;;

入し 57. 重さと質量 地球上の重力加速度の大きさを9.8m/s2 とし, 月面上の重力加速度の 大きさを地球上の であるとして,次の各問に答えよ。 (1) 地球上での重さが294N の物体の質量はいくらか。 (2) (1)の物体が月面上にあるとき, その質量はいくらか。 (3) (1)の物体が月面上にあるとき, その重さはいくらか。 [知識] 58. 糸の張力図のように, 質量 1.0kgのおもりを天井から糸でつるし て静止させた。このとき, おもりが受ける糸の張力の大きさはいくらか。 ただし,重力加速度の大きさを9.8m/s2 とする。 例題 8 > MOE 60. ばねのつりあい表は, 軽いばねにさまざまな質量の おもりをつるし,ばねの自然の長さからの伸びを記録した ものである。 重力加速度の大きさを9.8m/s2として,次の 各問に答えよ。 (1) 自然の長さからのばねの伸びx [m] を横軸に, ばねの [弾性力 F〔N〕 を縦軸にとったグラフを描け。 1310 (2) グラフから, ばねのばね定数を求めよ。 [知識] 59. ばねの弾性力 自然の長さ 0.200mの軽いばねに, 40Nの力を加えて伸ばすと,長 さが0.240mになった。 重力加速度の大きさを9.8m/s2 として,次の各問に答えよ。 (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ばねの長さはいくらになるか。 ヒント ばねの弾性力の大きさは, ばねの伸びに比例する。 F₁ sto(s) () NA F All 61. 力の合成と成分 図(a), (i) の xy 十面上における力上 〜 F について,次の各問に 答えよ。 14.0N 01.0kg 8.0 (1) 豆~下の成分, y成分をそれぞれ求めよ。 (2) 図(a), (b)について, 3つの力の合力のx成分, y成分をそれぞれ求めよ。 (3) 図(a), (b)について, 3つの力の合力の大きさをそれぞれ求めよ。 SUCORE.CO XOLOS. (a) (b) NA おもりの自然の長さから 質量〔g〕 の伸び〔cm〕 100 2.0 200 4.0 300 6.0 400 例題8 14.0N 第Ⅰ章 運動とエネルギー [n]として, つりあいの式を立てると 1.0×10²×x-5.0×9.8=0 ばねの長さは, . ばねのつりあい 0.200+0.049=0.249m x = 0.049m 答 (1) 解説を参照 (2) 49N/m につるしたおもりが受ける重力と弾性力は、つりあってい時 フックの法則 「F=kx」 から, F-xグラフの傾きは、 ばね定数に相 することがわかる。 説 (1) おもりが受ける重力と弾性力は, つりあっている。し たがって,弾性力の大きさFは,重力の大きさ 「W=mg」 から求め られる。 2.0N 100gのおもり: F=0.100×9.8=0.98N 200gのおもり: F=0.200×9.8=1.96N 300gのおもり: F=0.300×9.8=2.94N 400gのおもり: F=0.400×9.8=3.92N 2.9N 3.9N 表で与えられているばねの伸びはcmなので,これをmに換算し, グ ラフは図のようになる 01. の合成と成方 (2) フックの法則 「F=kx」 から, ばね定数はF-xグラフの傾きに相 当する。 x = 8.0×10mのとき, F=3.9N と読み取れるので, 3.9=k×8.0×10-2 k=48.75N/m 49 N/m (1) F₁-(ON, 4.0N), F₂=(-1.0N, ON) F= (4.0N, ON), F=(2.0N, 3.5N) 成分は, F(N) Just Fay=4.0sin60°=4.0x- 4.0 3.0 2.0 1.0 F=(-6.0N, ON), F=(2.0N, ON) (2) (a) x 3.0N, y: 4.0N (b) x -2.0N, y: 3.5N (3) (a) 5.0N (b) 4.0N 指針 それぞれの力の成分は, 図から読み取り, 三角比などを用いて 求める。 合力のx成分,y成分は,各力のx成分, y成分の和に等しい。 また, 合力の大きさは, 三平方の定理 「F=√F2+F」 から求める。 解説 (1) 1~F3,F's, Feの成分は,図から読み取る。 1 2 の成分は, Fax=4.0cos60°= 4.0 x = = 2.0N √3 2 0 =20√3=2.0×1.73=3.46 -3.5N (2) 図 (a)における合力のx成分は, Fx=0+(-1.0)+4.0=3.0N 成分は, Fy=4.0+0+0=4.0N 図(b) における合力のx成分は, Fx=2.0+ (-6.0)+2.0=-2.0N 成分は, Fy=2.0√3+0+0=3.46 3.5N (3) (2) の結果から, 三平方の定理を用いると, 図(a):√3.02+4.02 = 5.0N 図(b):2.02+(2.0√3)=4.0N 別 直角三 比を を求 bas 4. 4

回答募集中 回答数: 0
物理 高校生

物理の問題です。(1)から(3)が分からないので教えて欲しいです。 至急でお願いします。

5.x軸方向の正の向きに進む波があり, 時刻t [s] における位置x 〔m〕 の変位y [m〕 は, y=0.5sin (10nt -x)….① のような正弦曲線で表される。 このとき, 次の(1)~(3) について, それぞれあとのように解い た。 (1)~(4) の( )に適当な式や数値, 語句を答えなさい。 解答番号 51~60 (1) 「この波の振幅,周期, 波長を求めよ。」 〔解き方〕 この波の振幅をA [m], 周期をT 〔s〕, 波長を入 〔m〕 とすると, 時刻 t〔s] における位 t x 置x [m]の変位y [m] は, y=Asin2™ ( ・・・②と表すことができる。 ① 式を②式にそろえ T 入 るために, ①式の ( 10ヶt-πx) の部分を2ヶでくくって, y=0.5sin2 〔( 51 ) - ( 52 )〕… ③のように変形した式を考える。 ③ 式より, 振幅Aは,A = (53) [m]となる。 また, 周期T x t は、 入 T 51 より,T= ( 54 [s], 波長は, (2) 「この波の振動数を求めよ。 」 〔解き方〕振動数f [Hz] と周期T [s] には,f= ( 56 ) の関係があるので,これより, f = ( 57 ) [Hz] である。 「この波の速さを求めよ。 」 〔解き方〕 波の速さをv 〔m/s] とすると, v, f, xの間には,v= ( 58 ) の関係がある。 これより, v= ( 59 ) [m/s] である。 (3) = 52 より 入 = ( 55 ) [m]となる。

回答募集中 回答数: 0
物理 高校生

⑶の解説に[半波長ののm倍が円周の長さ0.25πに等しい]と書いてあるのですがなぜそうなるか教えてください

応力を磨く 解答編p.8 156 実験結果の解説を理解して考察するアウタイ ( 励振器 (バイブレーター) にループピアノ線 (直径25cm) を取りつけて振動させると ループピアノ線に沿って時計回りと反時計回りの振動が伝わり, 励振器の振動数を調整 すると円周上に定在波が生じる (図1)。 この定在波の発生について,以下の問いに答え よ。 0 第Ⅲ部 波 図1 ループピアノ線に生じた定在波 ( 腹の数が6個の定在波) [U ...... 0900 00000 ·m m 0 0 V V f(Hz) 150 100 (1) ループピアノ線に腹の数が6個の定在波が生じているとき, 励振器の振動数は 90 Hz であった。 ピアノ線を伝わる波の速さを求め, 円周率πを用いて答えよ。 (2) 直線に張った弦をはじくと張力によって振動するが,ループピアノ線は曲げによる 変形に対する応力によって振動する。 このため, ループピアノ線の振動は腹の数と振 動数が比例関係を示さず, 振動数fは腹の数の2乗にほぼ比例することが知られ ている (図2)。腹の数が2個 8個のときの振動数をそれぞれ推定せよ。 (3) 励振器の振動がループピアノ線を伝わるときの波の速さ”と腹の数の関係とし て,最も適切なグラフを下記の①~⑥から選び番号で答えよ。 1 50 0 (5) 腹の数mと振動数の関係 0 2 8 腹の数m[個] 図2 ループピアノ線の定在波の腹の数と 振動数fの関係 m 4 +m 6 0円 V m 221 HA

回答募集中 回答数: 0
物理 高校生

物理の電磁気の質問です。大問4の解答の左の1番上の段のF=|Fa-Fb|は分かるのですが、その後の Faは点A,点Cに、Fbは点B,点C に着目してクーロンの法則を用いているのが何故なのか分かりません

4 1 AはBから引力を受けているからB の電荷は負。 -g とおくと 90=9×10°x 2×10-q_ 0.12 2q g=5x10-5 .. -5x10-5C なお、問題文では 「電荷はいくらか」 としたが,「電気量はいくらか」 と同じ 意味である。 「電荷」 の方が 「電気量」よ り広い意味で用いられているが,区別は 気にかけなくてよい。 A 2 F=9×10°× =1.6N, 引力 接触させると電荷の一部は中和する。 残るのは F'=9x10°× 3 F₂=429 Fc=kg.2gkg2 (2a) 2 F=√FB²+Fc² 電磁気 +2×10-+(−8×10-)=-6×10-6 この電荷は A, B に半分 (-3×10-) ずつ分かれ、再び離すと両者は負で岸 りょく 力となる。 - kq² √√1+ a = √5 kq² 2a² = 0.9N, 斥力 ( 反発力) B g |_2×10-×8×10-6 0.32 3×10-×3×10-6 20.32 = 1 Fr B+ A+ FB FB Fc F [9] FA C DU 4* 図のような電荷をもつ小球 A, B, C が直線上 にa, rの距離を隔てて置かれている。Cが受け る静電気力の大きさFを求め, その向きが右向 きとなるためのrの範囲を求め, αで表せ。 右向きとなるためには FA-FB が正と なればよい。102 .. r²-2ar-a²>0 左辺=0とおいたときの2次方程式の解 r=a±√2a を用いて r>0 より r> (1+√2)a Cを自由に置ける場合には, AB間も 含まれる (FA, FBともに右向きの力と なるから)。 A より左側はFAが左向き で右向きのFBより大きく(Aの方が電 気量が大きいし距離が近いから), あり 得ない。 次図の太線部が該当することに なる。このような定性的な見方も大切で ある。 +1C →+++ C +2g F=FA-FB k2gg -|(a+r) ² = k·a·a/ C... kQ kq2r²-2ar-a² (a+r)²² A B 5 実線が+ のつくる電場 点線がのつくる電場 灰色は合成電場 -q A B (1+√2)a. Q Eo D +q C 07 D' E2 07 kQ (2a)² (4a)² D… y方向はキャンセルして消えてし まう。 x 方向は E₁ F xC + Q 3kQ 16a², 北方向

回答募集中 回答数: 0