学年

教科

質問の種類

物理 高校生

ローレンツ力の範囲です。(4)について質問なのですがeは何故マイナスを付けないのでしょうか。

半導体を用いて磁束 密度を測定する。 図のように x,y,z軸をとり、電流の 担い手が電子である半導体を置く。この半導体は x,y, 方向の長さが α, b, c の直方体である。 x軸に垂直な 面をP, Qで,y軸に垂直な面をR, Sで表す。 (1) 半導体の面Rから面Sに向かってy軸の正の向きに 第19章・電流と磁場 161 A BI J [電流Ⅰ〔A〕 を流した状態で, 磁束密度B[T]の一様な磁場がx軸の正の向きに加わる ようにする。 このとき, 半導体の内部を平均の速さv[m/s] y 軸方向に移動する 電子(電気量 -e 〔C〕) は,磁場から力F [N] を受ける。 Fの向きと大きさを答えよ。 (2) x軸方向に電流を取り出さないものとすると、この方向に電場 Ex〔V/m〕 が現れる。 ① 電場 Ex が生じる理由を述べよ。 ② 電場 Exの大きさを求めよ。 ③ 定常状態で,面Pと面Qの間に生じる電位差 Vx 〔V〕 を求めよ。 ④ 電位が高いのは面P, 面Qのどちらか。 X ●(3) 半導体内の1m²当たりの自由電子の数をn 〔1/m² 〕 とする。 電子が移動する平均の 速さを,電流Iの関数として表せ。 OL ●●(4) α =5.0×10-3m, b=1.0×10m,c=5.0×10m, n=2.5×10 /m²の半導体を用い て磁束密度を測定した。 半導体に流す電流を I=2.0×10-A としたとき, 面Pと面 Qの間の電位差は Vx=5.0×10-V であった。 磁束密度Bの大きさを求めよ。 ただ し,e=1.6×10 - 19 C とせよ。

回答募集中 回答数: 0
物理 高校生

(1)で電流がE→C1→R2→C2→Eの向きで流れるのは何故ですか?

94 15 直流回路 必解 115. <コンデンサーを含む直流回路> 抵抗 R1, R2, R3, コンデンサー C1.C2, スイッチ S1, S2 および 電池Eからなる回路がある。 R1, R2, R3 の抵抗値はそれぞれ2Ω, 4Ω 6Ωであり, C1, C2 の電気容量はともに4μF, E は起電力が 12V で内部抵抗が無視できる電池である。 最初 S は開いており S2 は閉じている。 (1) S1 を閉じた瞬間に R2 を流れる電流はいくらか。 (2) S1 を閉じて十分時間がたったとき R2 を流れる電流はいくらか。 (3) (2) のとき, C に蓄えられた電荷はいくらか。 (4) 次に, S と S2 を同時に開き, 十分時間がたった。 そのとき C に加わる電圧はいくらか。 (5) (4) のとき, R1 で発生する熱量はいくらか。 [東京電機大改] C1 S2 R3 S1 R₁ R₂ 必解 116. <電球とダイオードを含む直流回路〉 図1のように,電球, ダイオード, 抵抗値 20Ωの抵抗, および電圧 値を設定できる直流電源からなる回路を考える。 電球は図2のような 電流電圧特性をもつ。 ダイオードは図3で示すように,電圧 1.0V 未 満では電流 0A, 1.0V以上では電流 [A] = 0.20×(電圧 〔V〕 -1.0)の 電流電圧特性をもつ。 次の問いに答えよ。 (1) 電球の電流電圧特性に着目する。 電球の抵抗値は一定ではなく, 電圧や電流の値によっ 抵抗 20Ω 本 て異なる。 電球の抵抗値が26Ωになるときの, 電球に加わる電圧を有効数字2桁で求め よ。 S ダイオード 図1 電球 電源

回答募集中 回答数: 0
物理 高校生

Q1' Q2'の出し方を教えていただきたいです

問題 90 電気量保存の法則 ② 次の文中の空欄にあてはまる式を記せ。 図のように、電圧V[V] の電池 E1 と E2, 電 気容量 C〔F〕 のコンデンサー C1 と C2, および スイッチS と S2を接続する。 はじめ, スイ ニッチは開いた状態であり、コンデンサーは電 荷を蓄えていないものとして、次の操作 Ⅰ か らⅢを順に行う。 a2 S2 , b2 E1E2 C₁ Si bi 18 物理 C₂ 操作Ⅰ スイッチ S1 を a1, スイッチS2をa2 に順に接続した。 コンデンサー C] の右側の極板に蓄えられる電荷は, Q (1) 〔C〕である。 = 操作Ⅱ スイッチ Si を bi, スイッチ S2 をb2に順に接続した。 このとき、コ ンデンサーCの右側の極板および C2の左側の極板に蓄えられている電 荷をそれぞれ Q1 Q2 とすると,Q=Q1+Q2 である。 一方, キルヒホッ フの第二法則より、VをQ1. Q2, C で表すと, V= (2) 〔V〕である。 Q Q2をCVを用いて表すと, Q1 = (3) (C), Q2 (4) 〔C〕である。 操作Ⅲ スイッチ S1 を a1, スイッチS2をa2 に順に接続したあと, スイッチ S1 を b1, スイッチ S2をb2に順に接続した。 コンデンサー C」 の右側の極板 に蓄えられている電荷をC, Vを用いて表すと. (5) (C) であり、コン デンサーC2の左側の極板に蓄えられている電荷をC, V を用いて表すと, (6) 〔C〕である。 〈愛媛大〉

回答募集中 回答数: 0
物理 高校生

エッセンスに載っているコンデンサー回路の電位による解法は、「直列並列で解けないとき用いる」と書いてあるんですが、あまり使わない方がいい理由があるんですか?

9:38 1 58 必殺技・ ●電位による解法 電位を用いてコンデンサー回路を解く 1 適当に0V をとり、 回路の各部分の電位を調べる。 孤立部分について電気量保存の式を立てる。 N all 4G 45 [解説] 複雑な回路になると並列や直列に分解できなくなる。どん な場合にも対処できる方法の話をしよう。 まずはその準備から。 容量Cのコンデンサーがある。 極 板Aの電位をx (V), B の電位をy [V] とすると,A上に ある電気量は符号を含めてQ=C(x-y) と表される。 なぜなら,xyならA上には正の電荷があるはずで電位 差はV=x-yだから Q=CV=C(x-y) 反対に、 x<yならA上には負の電 荷があるはずで、電位差はV=y-xだから QA = CV=-C(y-x)=(x-y) 結局, 上の式は x,yの大小関係によらず成り立つ (x=yのときのQ=0 を含め て)。 x-yでは扱いにくいから, (考えている極板の電位) (向かい合った極板の電 位), もっと簡単に, (自分) - (相手) と覚えてしまおう。 ある極板上の電荷=Cx (自分一相手) EX 1 10μFのコンデンサーの電圧Vはいく 10μF らか。 また. 20μFのコンデンサーの左側 ト 極板の電気量Qはいくらか。 100 v/ 1°F 電位 この式は符号を含めて成立しているから, 孤立部分のすべての極板について 和をとれば電気量保存則が用いられる。 電位が求まれば、 コンデンサーのすべて 電位差, 電気量,静電エネルギー・・・が計算できる。 × +120μF 30μF y 40 V

回答募集中 回答数: 0
物理 高校生

高校物理過渡現象の問題です。 (6)の考え方は一通り理解できたつもりなのですが、二つのコンデンサが等電位になっているのに、電流が流れ続けるのが少し引っかかりました。図cを見る限り、電位差がなくなった後、コンデンサ3に電流が流れ込みいっぱいになったら今度はコンデンサ2に電流が... 続きを読む

法則ⅡIより / Vo+VL-0=0 よって VL=-12/Vo *B コイルに加わる電圧の大きさは 1/2vo AIL Vo (5) VL-24 だから12/2014/1 4t よって 12 4t 2L また、自己誘導が電流の流れを妨げるから、 電流は 0 AIL (6) コンデンサー C3 に流れこむ電流Icの変化は, 電気振動で示されるから, ス イッチ S2 を閉じた時刻を t=0, 電流の最大値を IM として, 図cのように表 される。 直列回路より電流は共通であるから, C3 に流れこむ電流が最大の とき, コイルに流れる電流も最大となる。 電流が最大のときは電流変化が 0 よりコイルの電位差が0であるから ※C, C2, C3 の電圧は等しく、その電圧 をVとすると, 電気量の保存より 12/23CV +0=CV+CV よってV=1/2vo ゆえに,C』に蓄えられている電気量Q3は Q321/Cro エネルギー保存より 1 c. (v.)² +0=1 c · (v.)³×2+LIM² LIN²=12/2CV32 よってIw=1/12/0 C 4 L L 12/12/10 =1/12/0 +CV. C₂ 1/12 Cro 図 d Ic IM O m VL 図 b ◆B コイルの左側が高電 位となる。 12/12/0 o(E C30 +CV C2 -CV 0 C3 *C V₁=-Lt AIL 4t fi 図 c AIL -= 0 だから Vi=0 L IM 図e C3 +CV V: -CV 物理重要問題集 151

回答募集中 回答数: 0