学年

教科

質問の種類

物理 高校生

解き方を教えてください。丁寧目に書いてくださると有り難いです。

pa -×0= 0 M3 X; = r cos 0 prdrd0 = ; p r2 dr [sin 01 = cos 0 d0 = =x pa3 ×0=0 「M3 1 p r sin 0 prdrd0 = M r2 dr M. [- cos 0] = Yc = sin 0 de = *y よって、重心は。= (0,0) 重心の計算(多重積分) *例題5質量がMで、密度が一様な、底面の半径a、高さが bの 円錐の重心 a-fe r dr M = pdxdydz = de dz = cb ca- r2r X; = r cos0 pr dO dr dz = …= 0 = 0 =x rb ra- r2m 1 Yc = TT r sin 0 pr d0 dr dz = … = 0 cb ca- c2r ZG = (宿題) z pr de dr dz = …→ JaJJA… まとめ * 大きさのある物体の重心を定義して、重心の位置を計算した。 * 地上での重力が大きさのある物体に働く場合、物体の各点で重力が働動くた め、つり合いを議論するとき、その重力の総和を計算する必要がある。 * 大きさのある物体に働く重力の総和は、その物体の重心に全ての重力が働 いた場合とつり合いの式は同じになる。 【宿題11質量M、密度が一様で十分に薄い2辺の長さがaの 直角に等辺三角形の重心を求めよ a a 【宿題2]質量M、密度が一様で十分に薄い半径aで2辺の間 の角が45度の扇型(円を8等分したもの)の重心を求めよ 【宿題31質量M、密度が一様で底面の半径がa、高さが の円錐の重心を求めよ。 (45° a * 宿題1、2、3を解きレポートを提出してください。 締め切りは4月24日の23時59分です。 補足:ベクトルの内積 A-B * AとBのなす角0、大きさ4,B 向きを持たない A.B= AB cos 0 ベクトルのx成分,y成分,z成分 A, = A-e, A, = A· ēy. A-B= A,B,+ AyBy +A,Bz A, =A-。 Ax x軸 ,,。:単位ベクトル = (1,0,0), é, = (0,1,0), é, = (0,0,1) |= | = le|=1, = ,.。 = é,. é, = 0 *分配法則:A-(B +¢) = A· E+ A-¢は成り立つので、 A-B= (A,,+ Ayé, + Azē,). (B,ē, + B,é, + B,ē.) = AxBx + A,B, + A,B。 12

回答募集中 回答数: 0
物理 高校生

⑵ボイルシャルルを使ってやったのですが答えが合いません この方法はダメなのでしょうか?

解答 (1) 1.6×10FP3 (2) 96℃ 指針 コックを開いて平衡状態に達したとき, A, Bの気体の圧力, 温度は等しくなる。 また, 周囲と熱のやりとりがないので, コックを開 く前後で, 気体の内部エネルギーの和は一定に保たれる。 気体は外に逃 げないので, 物質量の和も一定に保たれる。 解説 (1) コックを開く前のA, Bの気体の内部エネルギーをUょ, ○このような気体の混合 では、外部と熱のやりと りがなければ,内部エネ ルギーの和は保存される。 ○単原子分子からなる気 体の内部エネルギーび は、気体の状態方程式 しとする。アルゴンは単原子分子であり, U= nRT= DVの関 E 22 係を用いてU。UBを求めると, 1L=10°m° なので, カV=nRT を用いて。 U=ニ×(1.0×10) × (2.0×10-3)=3.0×10°J マA--』 なる。 Uゅ=;x(2.0×10) × (3.0×10-)39.0×10°J 22 コックを開いた後の圧力をが[Pa] とする。 このときのA, Bの内部 エネルギーの和をひとして, 11 U-DVの式を用い E U=;×が×(2.0+3.0)×10~3=7.5×10~3×が 2. 内部エネルギーの和は変化しないので, UA+Ug=Uから, 3.0×10+9.0×10-7.5×10-3×が (2) コックを開く前のA, Bの気体の物質量を nA, ng とする。 気体定 数をRとして, 気体の状態方程式かV=nRT を立てると, A:(1.0×10)× (2.0×10-3)=Dn,R(27+273) B:(2.0×10)× (3.0×10-)3D2%R(127+273) ている。気体全体の体積 は、A, Bの体積の和で あり,(2.0+3.0) ×10-3 m°となる。 が=1.6×10°Pa A:1.0×10°Pa, n、[mol]. 27℃ B:2.0×10°Pa, Ma[mol], 127℃ 変化前 2.0 これから, na3,0R' 3.0 * ng= となる。コックを開 2.0R A(2.0L 3.0L B いた後のA, Bの気体の温度を T[K] として, A, Bの 気体全体について状態方程式かV=nRTを立てると 変化後 1.6×10°Pa, n,+ma [mol), T(K (図), (1.6×10)×(2.0+3.0)×10-3%3 (natng) RT 8.0×10° a("u+Yu) 2.0 O平衡状態に達したとき A, Bの気体は同じ状態 にあるので、両者をまと めた気体の状態方程式る 立てることができる。 8.0×10° =369.2K =L 3.0 2.0R)R 369.2-273=96.2℃ 3.0R 求める温度(℃)は, 2.96 10

未解決 回答数: 1