学年

教科

質問の種類

物理 高校生

このマイナスはなぜついているのですか?

必解 148. <原子核> 原子核の性質に関連する次の問いに答えよ。 質量数 A,原子番号Zの不安定な原子核Xが原子核Yにα崩壊した。 初め原子核Xは静止 していた。原子核 X, Y, α 粒子の質量をそれぞれ Mo, M, m とする。 ただし, Mo> Mi+m である。また,真空中の光の速さをcとせよ。 (1) このα崩壊で発生する運動エネルギーを求めよ。 (2) α粒子の運動エネルギーを求めよ。 (3)α崩壊でつくられる運動エネルギーKのα粒子を金箔 (Au) に大量に当てたところ,α 粒子の大部分は金箔を素通りして直進したが、 ごく一部は Au 原子核に散乱された。α粒 子は Au 原子核に比べ十分に軽く, Au原子核はα粒子を散乱するときに動かないものとす る。α 粒子と Au 原子核が最も近づいたときの距離を求めよ。 ただし,電気素量を e, 静 電気力に関するクーロンの法則の定数をん とせよ。 また, 初めα 粒子は Au 原子核から十 分に離れていたので, そのときの無限遠点を基準にした静電気力による位置エネルギーは 0 とみなすものとする。 天然の放射性元素ウラン 288U, ウラン23Uは放射性崩壊する。 (4) 292U 原子核がn回のα崩壊とん回のβ崩壊を経て, ラジウム Ra が生じた。 n とんを求 めよ。 (5)23Uの半減期を 7.5×106 年, 2Uの半減期を4.5 × 10 年とする。 現在, 地上における 28Uと282Uの天然の存在比は1:140 である。 4.5×10 年前の存在比を求めよ。 (6)292U 原子核1個が遅い中性子との衝突により核分裂するとき, 2.0×10℃eVのエネルギ ーを放出するものとする。 毎秒1.1×10-7kgの2U が核分裂するとき, 1秒間に放出され るエネルギーをJ (ジュール)単位で求めよ。 ただし, 電気素量 e=1.6×10-19C, アボガド [19 大阪市大〕 ロ定数 NA=6.0×1023/mol, 28Uの1mol当たりの質量を235g とする。

回答募集中 回答数: 0
物理 高校生

250回目の最小値をとったときにHとBの距離はなぜLA+2ΔLになるのですか? 最小値が4Δlごとにあらわれるのが分かりません💦

<tttttt EXI 図2 一光線の空 リットが きいと 率力の れは子供 改 354 マイケルソン干渉計 Sを出た波長入の単色光が,Sから距離 Ls にある [兵庫県大 改] 347 図のように,光源 鏡 A LA 鏡B 半透鏡 H -22- ←Ls -LB- AL AL LD 検出器 D 半透鏡Hにより上方への反射光と右方への透過光 光源 S 2つに分けられる。 反射光は,Hから距離 LA に固 定された鏡Aで反射して同じ経路をもどり、一部が Hを透過してHから距離LD 離れた検出器Dに到達 する。一方, Sを出てHを右方へ透過した光は,鏡 Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離はLB (LB> LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 )Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, 4Lだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し、初めの位置から4Lだけ動いたとき最小となった。 波長を4Lで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し, +4のとき最大となった。 LB-LAを入と 4入で表せ。 (3) 次に, 光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入との比を求め [16 新潟大 改] よ。 ヒント 353(2)隣りあう2つのスリットを通る光の経路差= | (回折後の経路差)-(入射前の経路差)| 354 (3)250回目の最小値をとったときの,HとBの距離はLA +24Lであり、最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0