学年

教科

質問の種類

物理 高校生

物理の運動法での問題です。(6)の問題で赤で囲った部分がどういう変形をして出てきたのか分からないので教えて欲しいです。

運動方程式と束縛条件 次の文中の空間(1)~(6)にあてはまる式を記せ。 なめらかな水平面上に、8の角をなす。なめらかな斜面をもつ図のような台 (質量M)があ り、その斜面上に小物体(質量m)がのっている。 はじめ,台と小物体は滑りださないように 支えられている。また、図のように水平面上に工軸。 水平面上の固定点から鉛直方向に必 をとり、重力加速度の大きさを」とする。 支えを静かに離すと, 小物体と台はともに動きはじめる。 台の加速度の成分をA, 小物 体の加速度の成分をα, y 成分をb, 小物体が斜面から受ける垂直抗力の大きさをNとす ると, 台の方向の運動方程式は MA= (1) 小物体の運動方程式は ① ma- (2) mb= (3) ③ となる。 また、小物体が台の斜面に沿って滑り下りることを考慮すると, A, a, b, 8の間に、 (4) ....... ④ の関係が成りたつことがわかる。 ①〜④により,小物体が受ける垂直抗力の大きさはM, m, 0, g を用いて, N = __(5) と求められる。 また、はじめの小物体の高さ (水平面からの高さ)をんとすると, 小物体が動き始めてから 水平面に達するまでの時間tは,m, M, g, 6, h を用いて, t = (6) と求められる。 (同志社 25-

解決済み 回答数: 1
物理 高校生

【1】の(1) 【2】の(3) 【3】の(2)(3) を教えていただけるとありがたいです

【1】 物体が, 直線上を点A~Dまで運動した。 そのときの物体の速さと 時間との関係は,図のようになる。 次の各問に答えよ。 # [m/s] B 30 進行する向きを正とし, 加速度 α と時間との関係を表すグラフを描け。 (2) AD 間の距離を求めよ。 A 3 0 1 2 3 5 [分] 10 (2) 30x5x3 +30×2 +30x * +040 + 25 30 95 【2】 橋の上から小球を静かに落としたところ, 2.0s 後に水面に達した。 重力加速度の大きさを 9.8m/s2 として, 次の各問に答えよ。 橋 ●小球 000000000000000000 (1) 水面から橋までの高さはいくらか。 (2) 水面に達する直前の速さはいくらか。 (3) 橋の高さの中央を通過するときの速さはいくらか。 y = // ge² v=gt 02=2gg 2 19.6 19.6m4 9.8× 2 19.6 19.6m (12=1/2×9.8×= (2) v=gt 水面 (3)=2gg r2=2×9.8×9.8= 【3】 ある高さのビルの屋上から,鉛直上向きに速さ 9.8m/sで小球を投げ上げたとこ ろ 3.0s 後に地面に達した。 重力加速度の大きさを9.8m/s2をして、次の各問に答えよ。 (1) 小球を投げ上げてから最高点に達するまでの時間と, 屋上から最高点までの高さ を求めよ。 (2) 小球が地面に達する直前の速さを求めよ。 (3)地面からのビルの高さを求めよ。 L=vo-gt (1) 0 = =9.8-8 (2) y=voc-1/81212-vo2-286 0-9.8-98-1 t=0 y=4.8×1-1/2×98×1=9.8-4.9=4.9m # 9.8m/s 地面

解決済み 回答数: 1
物理 高校生

2個目のAで急に点Aがでてきた理由がわからないので教えてください

V 干渉 135 & 図を見ると山と山が重なっていない点にも強め合いの線が描かれていますね。 強め合いの位置というのはいつも山と山が重なってじっとしているわけでは ないんだよ。時間を追ってみると谷と谷が重なることもあり、 振幅2Aでバタ バタ激しく動いている点なんだ。 右の図で細い線は少し時間がたったときの 波面。 山の重なりはP′へ移っているね。 そ のうちPには谷と谷がさしかかることにな コしてるわけだ。 る。強め合いの線に沿って見ていくとデコボ 強め合いの線 P 山 S2を中心と して広がる 一方、弱め合いの線上での変位はどこも 0 で水面はじっとしているんだよ。 Sを中心と して広がる 波紋が広がるイメージ をもって見てみよう Q 条件式の方は考えれば考えるほど分からな くなります。 確かに=5,2=3のような位置では,波源と同じ変位だか ら,波源が山のとき, 山と山が重なり合います。 でも,=53入,2=3.3 (や はり差は21で強め合い)となると,いったいどう説明できるんですか? まず, 波源 S1, S2が山を出したときを考えよう。 この2つの山がやがて点Pで出合うわけではない ね。Pに近いS2 から出た山の方が先にPに着いて しまうからね。 S2 から出た山が出合う相手, それは SとPを結ぶ線上でPA=PS2となる点 A にいる 波だ。 つまり点 A に山がいることが強め合う条件だ。 SとAが同時に山となるためには SA=m入 ほら、 SAこそ じゃないか。 一方, 弱め合いは波源が山のときAに谷がいれば よい。 S2 の山とAの谷がやがてPで出合って打ち 消すことになる。 S, が山, A が谷となるためには 入 山 S1 強め合い P S2 これらがPで重なる 弱め合い P 山 S.A が 1/12 あるいは 123+m入であればいいね。 S1 S₂ Q なるほど。すると, 波源が逆位相のときは,Sが山を出したとき S2は谷を 出すと………そうか! 距離差=miならAは山でS2 からの谷と打ち消し合 うし,距離差= (m+1/2)入ならAは谷で強め合うというわけですね。

回答募集中 回答数: 0