学年

教科

質問の種類

物理 高校生

【高校物理、電磁気学】 河合塾出版の参考書、「高校物理」の例題4-5で分からないことがあります。 (c)(d)を解説と異なる方法で求めようとしました。(c)は答えが合いましたが、(d)は合いませんでした。私の解答を書きますので、どこが間違っているかをご指摘頂きたいです。一応... 続きを読む

第1章 電場 275 例題 4-5 電場と電位・位置エネルギー 真空中の電荷と電場に関する下記の y 文において, (a)から (d) にあ てはまる式を記せ。 ただし, クーロン P(-d,d) の法則の比例定数をk [N·m²/C2], •C(0,d) 電子の電荷を -e [C], 電子の質量 をm[kg] とし, 無限遠点での電位を 0Vとする。 0(0, 0) x B(-d, 0) A(d, 0) (1)A(d,0) と点B(-d, 0) に正の電荷 Q を固定し,y軸の点 C(0, d) 電子を置く。 D(0,- -d). 点Cで速度 0 であった電子が電場で力を受けてy軸上を動くとする と、原点0での速さは (a) | [m/s] となる。 (2) 点Aと点B の正の電荷 Q のほかに, 点Cに電気量 Q [C] の点電 荷を固定する。さらに,これら3つの点電荷を固定したままで, y 軸上 の負の方向の無限遠点に置かれた電気量 - Q [C] の点電荷をy軸に 沿って点D (0, -d)までゆっくりと動かす。 このときに外力がする 仕事は(b) [J] である。 (3)点Aと点Bに電荷 Q, 点 C と点Dに電荷 - Q を固定した状態から, 点Cの電荷 Q をC→P→B の経路で点B まで, また点Bの電荷 Q をB→O→Cの経路で点 Cまで同時にゆっくりと動かす。 このとき外 力がする仕事は (c) [J] である。 さらに,点Aの電荷 Q と点B の電荷 Q を固定したままにして, 点Cの電荷Qをy軸の正の方向に向かって無限遠点まで,また点Dの 電荷-Qをy軸の負の方向に向かって無限遠点まで同時にゆっくりと 動かす。 このとき外力がする仕事は(d) [J] である。 (東北大) 解答 (1) (a) 点A,Bの電荷による点Cおよび点0の電位は, それぞれ, Vc= kQ kQ √2kQ + √2d √2d d kQkQ_2kQ Vo d V₁ = kQ+kQ d 求める速さをひとする。 力学的エネルギー保存則より, 1/12m+(e)xVo=(-e) Vc .. mv²= (2-√2) kQe d

解決済み 回答数: 1
物理 高校生

(2) 投げた時に初速度があるのに自由落下として考えていいのはなぜですか? 壁に衝突前後で鉛直方向の速さが変化しないというのはわかるのですが、それでも投げた時に初速度があるから鉛直投げ下ろしで考えないといけないんじゃないんですか? 解説をお願いします🙇‍♀️

第1章力学 問題 24 固定面との衝突 図のように,質量m 〔kg) の小球を水平な床の鉛直 上方h 〔m〕の位置から, ([m) 離れたなめらかで鉛直な 壁に向かって、壁に垂直な水平方向に初速度v 〔m/s) で投げたところ, 小球は壁に当たってはね返り, 床に 落下した。 小球と壁との間の反発係数(はね返り係数) をeとし,重力加速度の大きさをg〔m/s2) とする。 (I) 小球を投げてから壁に当たるまでの時間はいくら か。 小球を投げてから落下点に到達するまでの時間は いくらか。 (3) 壁から落下点までの水平距離はいくらか。 物理 衝突によって鉛直方向 (壁に平行な方向) の速度成分は変化しないので 鉛 直方向では壁に当たる前と後に分ける必要はない。 求める時間をた〔s〕とす ると,距離〔m〕の自由落下と考えて、 1 h = 29t22 よって,t= 2h -[s] g [s]である。この (3) 壁に当たってから落下点に到達するまでの時間は 間 水平方向には右向きに速度 ev [m/s] の等速度運動をするので、 求める 水平距離 x[m] は, 2h x=ev(tz-t) = ev [[m] wg v (4) 小球が壁から受けた力積は, 垂直抗力によるものである。 (4) 小球が壁から受けた力積の大きさはいくらか。 Pointe <愛知工業大 〉 物体が受けた力積の求め方には,次の2つがある。 (i) (物体が受けた力) × (力を受けた時間) (解説) (I) 小球を投げてから壁に当たるまでの間, 水平方向には左向 きに速度v [m/s] の等速度運動をするので,求める時間を 物体が受けた力積 t] 〔s] とすると, 01 = vt₁ よって, =- (s) ひ (2) 壁に衝突することで, 速度がどのように変化するか を考えよう。 壁はなめらかなので, 壁と接触している 間に壁から受ける力は、垂直抗力のみである。 そのた め,壁に平行な方向の速度成分 (右図のvy) は変化せず, 壁に垂直な方向の速度成分 (右図のvx) は変化する。 反 発係数をeとすると,次のようにまとめられる。 vx なめらかな壁 Vy → 垂直抗力 evx (ii) 受けた力の方向の物体の運動量変化 この問題では、壁と接触している時間がわからないので, (i)では求められ ない。 (ii) 運動量変化で求めよう。 水平右向きを正として、水平方向の運動量 ま 変化より 内系材(小球が壁から受けた力積)= m.ev-m(-v) 運動量変化 =(1+e)mv〔N・s〕 注 反発係数eの値の範囲は0≦e≦1であり, e=1の衝突を弾性衝突(または完全 弾性衝突), 0e<1の衝突を非弾性衝突, e=0の衝突を完全非弾性衝突という。 toder Vy Point なめらかな壁に反発係数eの衝突をするとき, ・壁に平行な方向 壁に垂直な方向 52 52 速度成分は変化しない。 ・速度成分は向きが逆に,大きさが倍になる。 (1) (8) (2) 2 (s) 2h 12h (3) ev Ng [[m] ひ g (4)(1+e)mv〔N's〕 5. 力積と運動量

解決済み 回答数: 1
物理 高校生

(2) 力学的エネルギーの変化量を考えるとき、動摩擦力による仕事は考えなくていいんですか?

第1章力学 問題 18 仕事と力学的エネルギー ② ばね定数k (N/m) の軽いばねの一端に,質 量m(kg) のおもりAをつけたばね振り子が ある。このばね振り子をあらく水平な床面上 物理基礎 公式 A U = 11/√ kx² 100000000 năm Q 0 -31 P IC 5/ 置き ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のように, Aを原点Oから点P(x=5/〔m))まで引っ張って、静か にはなした。Aは左向きに運動し始め、点を通過した。 その後、x=-31 (m) の点Qで静止した。 床面とAとの間の動摩擦係数をμとし、重力加速度 の大きさをg(m/s) とする。 (I)Aが点PからQまで運動する間に、動摩擦力のする仕事 W (N・m) を求 めよ。 Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E (J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 弾性力による位置エネルギー(弾性エネルギー) U (J) (k (N/m): ばね定数 〔m〕: 伸び縮み) (I) おもりAにはたらく動摩擦力の大きさはμmg 〔N〕でPからQまでの移動 距離は8/〔m〕 である。 よって, 求める仕事 W [N·m〕 は, W=-μmg818μmgl (N・m〕 (2) 求めるのは「力学的エネルギーの変化量」なので、 おもりAの運動エネル ギーと位置エネルギーの和の変化量を考える。 Aは水平方向に運動しているので, 高さが変化しておらず重力による位置 エネルギーは考えなくてよい。 また, 点P, 点Qは自然長(原点O)からずれ た位置なので,点P, 点Qにおいて, Aは弾性力による位置エネルギーをもつ。 点P,Qにおける, 弾性力による位置エネルギー Up, UQ[J] は, それぞれ, 〈千葉工業大 〉 Up = =1/21k(50)2-252k2 =/( 9 U₁ = ½k (31)²=kl² 2 (解説) ばねが自然長から伸びたり縮んだりしているとき, ばねの両端 には自然長に戻ろうとする向きに力が生じる。 この力を弾性力 点Pでは 「静かにはなし」 点Qでは 「静止した」 ので, それぞれの点で速 さは0.すなわち, 運動エネルギーKP, Ko〔J〕 も0になる。 よって という。 4E = 0 + 25 0+ -kl² 2 == 8kl² (J] 変化後KQ+ UQ 変化前 K + Up 公式 弾性力の大きさF(N) F=kx (k(N/m〕: ばね定数 〔m〕: 伸び縮み) (3) ⊿E = Wより ※ 弾性力の向きは, 自然長に戻ろうとする向き。 - 8kl² == -8umgl よって, μ = kl mg F ⇒縮みx, 弾性力F,=kx, 弾性エネルギー U22kx2 自然長⇒弾性力0, 弾性エネルギー 0 X1 X2 mmmm 000000 F2 ⇒ 伸びzy→弾性力Fy=kx, 弾性エネルギー U2=1/2k2 自然長 注 ここで, p.39 公式 力学的エネルギーと仕事の関係と p.37 公式 運動エネル ギーと仕事の関係の違いを、しっかりとおさえておこう。 保存力である重力 弾性力について, 位置エネルギーを考えるのが 「力学的エ ネルギーと仕事の関係」 であり, 仕事を考えるのが 「運動エネルギーと仕事の関 「係」である。 1つの式の中で、重力 弾性力の位置エネルギーと仕事を同時に考え こることはない! た, ばねは伸びたり縮んだりしているとき, 弾性エネルギーを蓄えている。 エネルギーは弾性力による位置エネルギーともいう。 kl (1) W = -8μmgl〔N・m〕 (2)4E = - 8kl[J] (3)μ= mg 4. 仕事とエネルギー 41

解決済み 回答数: 1
物理 高校生

❹(1)(2)を教えてください。

15m/s 解答 (1) x2 (2) x=3 15m/s 指針 /s の一定の速さで走る自動 問いに答えよ。 15m/s 15m/s させてん は何km/hか。 車の進む距離は何mか。 を含む項を 運動の表し方 線道路をバスが東向きに速さ いる。 東向きを正の向きと 答えよ。 20m/s 4東 東 東 20m/s で走る自動車がある。 る人から見た自動車の相対速 15m/sで走る自動車がある。 る人から見た自動車の相対速 m/sの速度で走っていた自動 かけたところ, 一定の加速度 後に速度が東向きに 10m/s (3) 14 質量 0.10kgの 小球を高さ 29.4mのビルの 上から鉛直下向き に 4.9m/sの速さ 29.4m 4.9m/s 投げ下ろした。 次の問いに答えよ。 ただし, 重力加速度の大 きさを9.8m/s2 とする。 (1) 小球が,地面まで落下するのにかかる時間 は何か。 (2) 地面に落下したときの小球の速さは何m/s か。 □⑤ 質量 0.10kgの小球 を地面から鉛直上向き に 9.8m/sの速さで投 げ上げた。 次の問いに 答えよ。 ただし,重力 加速度の大きさを 9.8m/s2 とする。 9.8m/s (1) 最高点に達するまでにかかる時間は何sか。 (2) 最高点の高さは何mか。 (3) 小球を投げ上げてから地面に落下するのに かかる時間は何sか。 □⑥ 次の空欄に適切な語句を記せ。 最高点 20.10kg 水平投射運動は,物体を水平に投げ出した ときの運動である。 この物体は, 水平方向に は ( ① ) 運動, 鉛直方向には ( ② ) 運 を読み取り、 数に注目して, 1章

解決済み 回答数: 1
物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 
直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

1 3 W₁ 168.弾性体のエネルギー <解答> (1) 解説を参照 (2) mg 1 k 0= mg k (4) x= (1) (2) 物体は重力, 弾性力 垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。 また, 板が物体からはなれるとき, 垂直抗力が0となる。 (3)物体は重力弾 性力の保存力だけから仕事をされ, その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。(4) 運動エネル ギーをxの関数として式で表し、 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きに kx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから、 2mg_ k 1 2 m k 9 mg-kx-N=0 N=mg-kx ...① これから, Nとxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N=0 となる。 (3) -mv-mgx2- 2mg k 図 1 x₁= (4) 速さが最大になるときの物体の位置をxとする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると, 2+ +½kx²³² kx mg 図2のグラフから, N = 0 となるxの値は, x= k (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも0である。 ばね の伸びが最大になるときの物体の位置をxとすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/21 kx² と表される(図3)。これから,力学 的エネルギー保存の法則の式を立てると 図3 200-mgx+1/23kx0=x,(kx,-2mg) x₁=0, 2mg_ k x = 0 は板を取り去った位置なので、 解答に適さない。 したがって, mg て,x2= のとき、1/12mmは最大値 k ▼mg (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 mg_ | mv²=mgx₂= kx²=-=k(x₂ − m ² ) ² + ²q² ... @ 2k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² 2k となる。 NA mg 図2 E=0 mg k +½kx² E=0-mgx+ 7 0 ンズ (3) 物体の力学的エネ ルギーは、 運動エネルギ 重力および弾性力に よる位置エネルギーの和 である。 第1章力学Ⅰ 物体の位置がxのと き 重力による位置エネ ルギーはmgxz, 弾性 力による位置エネルギー は kx2²/2 となる。 01/23m²の最大値を求 めるには,式②のように 平方完成をするとよい。 101 some 体に力を加えて いて, この力がする仕事の仕事率を求めよ。 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 自然の 長さ HALA 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置xを求めよ。 17 (3) 板を急に取り去った場合, ばねの伸びが最大となるときの物体の位置 x を求めよ 物体 板| ばね < (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (拓殖大改) 速さ”をそれぞれ求めよ。 [←]自然の長さ ors→Q Ø Ø d d d d d d d d d d d d d d d d d d [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数んのばねの一端を固定し、 他端に質量mの物 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を原点Oからx軸の正の向きに距離 はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 8420 (愛知教 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。

解決済み 回答数: 1
物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

の長さ h=250 -E 0° ngcos3 0° _mgcos30 30° 168. 弾性体のエネルギー 解答 (1) 解説を参照 (2) (4) x= mg k V= x= mg_ k m k て,x2= g 物体は重力弾性力、垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。また, 板が物体からはなれるとき,垂直抗力が0となる。(3)物体は重力,弾 性力の保存力だけから仕事をされ,その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。 (4) 運動エネル ギーをxの関数として式で表し, 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きにkx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから, mg-kx-N=0 N=mg-kx ...① これから, Nxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N = 0 となる。 (3) mg 図2のグラフから, N = 0 となるxの値は, x= k 2mg k mg のとき, k 図1 Rx N x=0, x = 0 は板を取り去った位置なので、 解答に適さない。 したがって 2mg k mg (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも 0である。 ばね の伸びが最大になるときの物体の位置を x1 とすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/12 kx² と表される(図3)。これから,力学 図3 的エネルギー保存の法則の式を立てると, 0=0-mgx + 1/23kx120=x(kx-2mg) 1 mv² は最大値 2 (4) 速さが最大になるときの物体の位置を x2 とする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると 0=1/2mv-mgx2+1/12kx2² 1/12mmx212/2kx=-12/21(キュー)+².② m²g² mg 2mg_ k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² となる。 2k (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 NA mgs 図2 E=0 mg k F000000006 i + 1/2kx ₁² E=0-mgx+- 0 X1 1x (3) 物体の力学的エネ ルギーは, 運動エネルギ 一. 重力および弾性力に よる位置エネルギーの和 である。 第1章 力学Ⅰ 物体の位置がx2のと き, 重力による位置エネ ルギーはmgx2, 弾性 力による位置エネルギー は kx2²/2 となる。 0/1 m² の最大値を求 めるには,式 ② のように 平方完成をするとよい。 101 some きる。 体に力を加えて, 一定の いて,この力がする仕事の仕事率を求めよ。 ただし, 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数kのばねの一端を固定し、 他端に質量mの物 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置 x を求めよ。 (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (3) 板を急に取り去った場合,ばねの伸びが最大となるときの物体の位置xを求めよ 速さ”をそれぞれ求めよ。 (拓殖大改) 自然の長さ 自然の 長さ 物体 板| Os→0 ばね < 0000 X 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を、原点Oからx軸の正の向きに距離はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。 (愛知教育大

解決済み 回答数: 1
物理 高校生

なぜ①+②なんですか? 代入して求めるのではだめですか

第1章 物体の運動とエス <発展例題 18 摩擦のある斜面と2物体の運動 図のように、傾きの角が30° のあらい斜面上 に質量mの物体Aを置き, これに軽い糸をつ け, 軽くてなめらかな定滑車を通して質量 2m のおもりBをつり下げたところ, A, B は動き 出した。 A が斜面を上昇するときの加速度の 大きさはいくらか。 Aと斜面との間の動摩擦 係数を 考え方 . Aにはたらく力 分ける 斜面に平行な力 重力成分 mg sin 30° 動摩擦力 F'= N 糸の張力 T 重力加速度の大きさをgとし, 斜面は固定されているものとする。 √√3 Aの運動方程式 斜面に垂直な力 重力成分 mg cos 30° 垂直抗力 N ・B: 2ma=2mg-T ① +② から, 代入 Aの力のつりあい N = mg cos 30° 3ma=2mg- 1/12 mg/1/15.1mg √3 √√3 2 3ma=mg よって,a=13239 30° mgsin30% F'= 30° -N 解答 A,B の加速度の大きさをα, 糸の張力の大きさをTと し,A,Bの運動の向きをそれぞれ正の向きとする。 運動方程式は m N A ・A:ma=T-mgsin30° 13 mg cos30°…① 斜面方向 = √√3 鉛直方向 sin 30° 130° mg =. 11/212 cos 30°=- √3 2 139 T mg cos30° 2m One Point > 物理独特の言い回し ・なめらかな(面) ⇒ 摩擦の無視できる (面) ・あらい(面) ⇒ 摩擦のある (面) 軽い(糸) ⇒ 質量の無視できる(糸) ・小球 (または小物体) ⇒大きさの無視できる球 (または物体) 補足 糸で結ばれた じ大きさの 運動する。 糸の張力の 糸のどの部 (車 左の結果 T=2m(

解決済み 回答数: 1
物理 高校生

この問題で直線の傾きは負なのに、答えの電場が負にならないのはなぜですか?

G 基本例題 71 一様な電場内での陽イオンの運動 x軸に平行な一様な電場があり, 位置 x 〔m〕 とその点V[V] の電位V [V] との関係は,図のように表される。 (1) 点Aと点Bの電場ベクトルを EA, Eb [V/m〕 とする。 30 E, EBの強さと向きをそれぞれ求めよ。 / (2) AB間の電位差 VAB 〔V〕 を求めよ。 電場の強さ E= AB 次に,点Aに電気量 3.2×10-19C の陽イオンを静かに置いたところ, イオンは電 0 0.020 0.040 0.060 場から力を受けて動きだした。 | (4) イオンが点Bに達したときの運動エネルギー K〔J〕 を求めよ。 / (3) イオンが電場から受ける力の大きさ F〔N〕 を求めよ。 傾きこの電場 V d (1) 一様な電場なので V 130 EA=EB=E== d 0.060 (3) F=qE = = 5.0×10²V/m 回 電場の向きは, 高電位→低電位の 向き。よって, E. EBともに x軸の正の向き (2) AB間の距離 d' = 0.020m より VAB=Ed' 電荷が受ける力 F=gE =(5.0×102)×0.020=10V 第21章 静電気力と電場・電位 187 ● =1.6×10-16N =(3.2×10-19)×(5.0×102) POINT 355 x (m) 電荷を運ぶ仕事 W=gV (4) AB間で電場がイオンにした仕事 W=qVAB イオンの運動エネルギーの変化=電場が した仕事W より (1) K-0=qVAB よって K = (3.2×10-19) ×10 = 3.2×10-18J 一様な電場 電場の強さ E=- V ← 電位差 d←距離 物

解決済み 回答数: 1