学年

教科

質問の種類

物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

1番最後の問題は相対速度でも解けるんですか? 等速直線運動じゃないと相対速度は使えないとかありますか?

10 (1) Bは左向きに Bの μmgを受ける。 とすると、 運動方程式は μmg B ときの運動方程式を記せ。 a=-μg A ma= -μmg (3) しばらくして、等速度運動になった場合 の速さを求めよ。 2 1 公式よりv=v+at=vo-ngt... ① (2)Aは動摩擦力の反作用を右向きに受ける (赤矢印)。 AA とすると, Aの運動方程式は M=2.0[kg].0=30° のとき、 図2の曲線 のような実験結果が得られた。 なお、 図2の 斜めの点線は、時間t=0 のときの接線としg=10(m/s) とする。 (4) 動摩擦係数を求めよ。 (5) 空気の抵抗力の係数を求めよ。 (岐阜大 + 東京大) 012345 t[s] 図2 ③ やり に対 MAμmg ...② . A=umg M ②左辺 (M+m)A したがって, A の速度Vは V=At = μm gt 「してはいけ M (3)v=Vより vv-μgto=Hmg Moo Egto ∴. to= M μm+M)g 19 m (4)V=Atom+M Vo 3- を求めてもよい (5) Aに対するBの相対加速度は a=a-A=-m+M Vの方が計算しやす μg M A上の人が見れば の単純な運動。ただし、 てはその人が見た値で。 Aに対しては、 Bは初めでやってきて 加速度αで運動し、やがて止まる。 したがって Mul OF-²-201 1= 2 (m+M)g 別解 固定台に対する運動を調べてもよい。 x x = Vo x=voto+mato2 X x-A 右図より Ix-X として求められるが, 本解の方 X が計算が速く、 応用範囲も広い。 B vo S₁ S3 A S2 なめらかな水平面S, S. と鉛直面 S3 からなる段差のある固定台がある。 面 S2 上に, 質量Mの直方体AをS, に接す るように置く。 Aの上面はあらく その高 さは面Sの高さに等しい。 質量mの小物 体BとAの間の動摩擦係数をとし、重力加速度をgとする。 いま B を初速で水平面 S, 上から, Aの上面中央を直進させたところ, A は運動をはじめ,ある時刻 t 以後, 両物体の速さは等しくなった。 BがA上に達した時刻をt=0とする。 時刻to より以前の時刻におけ るBの速さは (1) で, A の速さは (2) である。 toは (3) で、 そのときの速さは (4) である。 また, BがA上を進んだ距離は (5) である。 (岡山大 ) する

回答募集中 回答数: 0
物理 高校生

問題集17についてです (4)の解答で①を代入してと書いてありますが、①は切断する前の関係なのになんで切断後も使えるんですか?

14 (イ) 糸yの張力はいくらか。 (ウ)Bが板を押している力はいくらか。 16 基 水平な床から 30°傾いた斜面上に 質量mの物体Pがあり, 質量Mの小 物体Qと滑らかな滑車をかいして糸で 結ばれている。 Pと斜面の間の静止摩擦 係数を / 動摩擦係数をとし、重 力加速度をg とする。 2/3 力学 15 (武蔵工大+北海道工大) 0=v+α'tz より 141 17 等速度運動 (等速直線運動) では力のつり合いが成りたつ。 浮力 (1) Aに注目すると T=mg (2) B に注目すると F=Mg+T= (M+m)g ... ① Mg, m P 130° 浮力の公式 F=pVg より V=F_M+m 浮力は周りの流体 の密度で決まる B T pg P (3)Aは初速での投げ上げ運動に入る。 地面の座標は x=-h だから,公式を用いて T A mg (1) PQ が静止しているためのMの範囲をm を用いて表せ。 (2)味からのQの高さをおとしごととして静かに放すと 下がり始めた。Pが滑車に衝突することはないものとする。 (7)Qの加速度の大きさと、Qが床にするときの速さ よ。 か を求め (イ) Q が床に達した後,Pはやがて斜面上で最高点に達して止まった。 Pが動き始めてから止まるまでに移動した距離とかかった時間 を求めよ。 -h=vto+(-9)to gt-2 vto-2h=0 この方法を 3- マスターしたい to >0より to = 1/1 (u+vo+2gh) 9 (4) 糸が切断された後の気球の運動方程式は, 加速度をαとして Ma=F-Mg を代入して a= g えるの 公式③より v₁²-v² = 2 ah .. U₁ = 02+2mgh V M -hmm (富山大 + 横浜国大) 18 (2) 17 質量 M の気球B (内部の気体も含む)が、質量 mの小物体Aを質量の無視できる糸でつるして, 定の速さで上昇している。 重力加速度をg とし 空気の抵抗および物体Aにはたらく浮力は無視でき るものとする。 (1) 右のようになる (Mg, N などの文字は不要)。 N = Mg cos 0 だから 垂直抗力N 空気抵抗力kv B Ma=Mg sin 0-Mg cos 0-kv ...⑰ (3) 等速度運動では力のつり合いが成りたつ。 斜面 方向について Mg sino=μMg cos 0 + kv 動摩擦力 μN A .. v= Mg k (sin0-μ cos0) ... ② 等加速度 重力 3 Mg ではない (1) 糸の張力Tはいくらか。 (2) 気球Bにはたらく浮力Fはいくらか。 また,外部の空気の密度を p とすると,気球の体積Vはいくらか。 物体Aが地面からんの高さになったとき,糸を切断した。 (3) Aが地面に到達するまでに要する時間toはいくらか。 (4) 糸が切断された後, 気球がさらにんだけ上がったときの気球の速 さひはいくらか。 (信州大 ) 別解 等速度では α=0 なので, ①よりを求めてもよい。 (4) t=0では,v=0 なので抵抗力はなく, 加速度を α とすると, ①より Ma = Mg sin 30°μ Mg cos 30° ...3 一方,図2の v-t グラフでは接線の傾きは加速度を表すから ao=3 [m/s] と分かる。 ③より (Mは両辺からカットして) 3= 3-10--10-3 2 2 5√3 15 =2√3 = 0.23 有理化すると 計算しやすい (5)図より終端速度はv=4 [m/s] だから, ② を用いて

回答募集中 回答数: 0
物理 高校生

五番の回答が2個あるのは後を見すえてでしょうか? また、六番も分かりません

6 加速度運動 5. 方投射と自由落下等加速度直線運動〉 同時に動きだした2つの小球の衝突について考える。 図1、図 2のように、水平方向右向きに。 鉛直方向上向きにy軸をと る。時刻10 で 原点Oから小球Pをx軸の正の向きから角 (0°<8<90°)の向きに、速さ(0) で投げ出す。 ここでは 反時計回りを正とする。 重力加速度の大きさを」として、次の間 いに答えよ。 ただし、小球はxy面内でのみ運動し、空気抵抗は ないものとする。 まず。 図1のように小球を投げ出すと同時に、 小球Qを 標 (a,b)から静かに落下させた。ただし、40b>0 とする。 (1) 投げ出した小Pが小球Qと衝突するまでの時刻におけ る小球Pの座標を求めよ。 (2) 投げ出した小球Pがによらず小球Qと衝突するための tan を求めよ。 次に、 図2のように, 原点を通り軸の正の向きから角 (0°<a<90°傾けた、なめらかな斜面を設置した。 ただし, α は時計回りを正とする。 小球Qを原点Oに置き、 小球Pを投げ出 すと同時に小Qを静かにはなすと, 小球Qは斜面をすべり始め た。 小球 P h 18 a 図1 小球 Q 図2 小球 Q 小球 P 斜面 (3) すべり始めた小球Qが小球Pと衝突するまでの時刻における小球Qの座標を求めよ。 (4) 投げ出した小球Pが、によらず小球Qと衝突するための tan を求めよ。 6. <斜面への斜方投射> 図のように水平と角度 0 (0) をなす斜面上の原点O から、斜面と角度をなす方向に初連量の小 球を投射した。 原点から斜面にそって上向きにx軸を. 斜面から垂直方向上向きにy軸をとる。 斜面はなめらか で十分に長いものとする。 重力加速度の大きさを」とし、 空気抵抗はないものとする。 また、角度0とは <8+α < 21/2の関係を満たすものとする。 〔23 富山県大〕 (4) 小球が斜面と衝突する時刻を求めよ。 (5) 小球が斜面と衝突する点の原点からの距離を求めよ。 (6)距離が最大となる角度αを求めよ。 小球が斜面に対して垂直に衝突した場合について考える。 (7)角度αと8の関係式を求めよ。 (8) 小球が斜面に衝突する直前の速さをを用いて表せ。 7. 〈斜面をのぼる小球の運動> 水平な面(下面)の上に、高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x.y.y軸をとり、斜面の角度はx軸方向から見た断面 である。 下面上でy軸の正の向きに 軸とのなす角を0. として、質量 mの小球を速さで走らせた。 な お, 0 <6<90° かつ0 とし、小球は面から飛び上が 力加速度の大きさをgとし、 斜面はなめらかであるとす 次のアイに入る最も適当なものを文末の ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア る。 小球が斜面をのぼりきって上面に到達したとき ウy成分の大きさはエ(のぼりきる前 また、斜面をのぼり始めてから上面に到達するまでに 小球の進む方向とy軸とのなす角度を とすると, なる。 (2) 初速度の大きさを一定に保ちながら, 0, 0 さいうちは小球は上面に到達した。 しかし. 8, があ ずに下面にもどってきた。 このときのの満たす 0.0 のとき小球が斜面をのぼり始めてから再 クである。 ア イの選択肢 時刻における小球の位置のx座標, y座標を示せ。 時刻における小球の速度の成分 成分を示せ。 小球を投射した時刻をt=0 とし, 小球が斜面に衝突するまでの運動について考える。 小球にはたらく重力の成分 成分を示せ。 ① 等速度運動 ②加 ③ 加速度 -g cos の等加速度運動 ④ 加 ⑤ 加速度 α- sin 9 の等加速度運動 ⑥ 加 加速度 α- 9 tano この等加速度運動

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0