学年

教科

質問の種類

物理 高校生

なぜ糸の張力がMgになるのか教えてください🙇‍♀️

円盤からの垂直抗力を mg 発展例題19 円錐容器内の運動 V 容器の内容 z軸を中心軸とする頂角20の円錐状の容器がある。容器の内 側に質量mの小球があり、容器の底にある小さな穴を通して,質 量Mのおもりと糸で結ばれている。 小球は,穴から円錐の側面に 沿って距離Lの位置を保ち、 容器内のなめらかな斜面上を速さひ で等速円運動しており, おもりは静止している。 糸と容器との間 に摩擦はなく,重力加速度の大きさをgとする。 小球の速さv を, m, M, L, 0, g を用いて表せ。 (筑波大改) 指針 小球とともに回転する観測者には, 距離Lが一定なので, 小球は,重力, 糸の張力, 垂直抗力, 遠心力を受けて, 力がつりあって静止 しているように見える。 円錐の側面に沿った方向 の力のつりあいの式を立てる。 なお, 静止した観 測者には,小球は重力, 糸の張力, 垂直抗力を受 けて,等速円運動をするように見える。 解説 小球とともに回転する観測者を基準 に考えると,小球には図のような力がはたらく。 糸の張力は,おもりが受ける力のつりあいから, m 発展問題211, 216 -sin0 LO m Mg である。 円運動の半径 垂直抗力 はLsin0 なので, 遠心力 の大きさはmv²/ (Lsine) となる。 円錐の側面に沿っ た方向の力のつりあいから, Mg 2 vo² 10 L sine - mg cose-Mg=0 L Vo=. (M+m cos0) g m M Vo vo² m L sine m -sind L sind mg mg cost カ E に } @ t 21 21

回答募集中 回答数: 0
物理 高校生

(1)で、なんで氷から水蒸気ではなく水のところだけを考えるんですか??

発展例題11 氷の比熱 質量 400gの氷を熱容量120 JKの容器に入れ, 容器に組みこんだヒーターで熱すると,全体の温度 は図のように変化した。 熱は一定の割合で供給され, すべて容器と容器内の物質が吸収したとし水や氷 の水蒸気への変化は無視できるものとする。 また, 水の比熱を4.2J/(gK) とする。 DN (1) ヒーターが供給する熱量は毎秒何Jか。 (2) 氷1gを融解させるのに必要な熱量は何Jか。 指針 (1) 254s 以降の区間では、 氷はす べて水に変化している。 水と容器の温度上昇に 必要な熱量から、ヒーターが毎秒供給する熱量 を求める。 (2) 温度が一定の区間 (32~254s) では, 供給さ れた熱量はすべて氷の融解に使われる。 これか ら, 氷1gの融解に必要な熱量を求める。 (3) 氷と容器の温度が上昇する区間 (0~32s) で, 温度上昇に必要な熱量から, 氷の比熱を求める。 解説 (1) 水と容器をあわせた熱容量は, 400×4.2+120=1.8×10°J/K 254~314sの間に供給された熱量で, 水と容器 の温度が0℃から20℃まで上昇するので, ヒー ターが毎秒供給する熱量を Q〔J〕 とすると, 温度(°C] 20 --- 0 /32 254 314 時間 [s] * 30 -20 WHO aflε-E (2) 04 (3) 氷の比熱は何J/ (g・K) か。 発展問題 (18×103)×(20-0) =Qx (314-254) * BLACO 4,001 がい Q=6.0×102 J (2) 32~254sの間に氷はすべて融解した。 氷1g P を融解させるのに必要な熱量をx〔J〕 とすると, 400×x=(6.0×102)×(254-32) x =3.33×102J 3.3×102J (3) 氷の比熱をc[J/(g・K)] とすると, 氷と容器 をあわせた熱容量は, 400×c+120[J/K] 0~32sの間に供給された熱量で, 氷と容器の 温度が-20℃から 0℃まで上昇するので, (400Xc+120) ×{0-(-20)} =(6.0×10²) x (32-0) c=2.1J/(g・K)

未解決 回答数: 0
物理 高校生

(2)の式変形がどうして答えに繋がったのか詳しい途中式が知りたいです。

200000000000円 x軸をとる。 A 500 m x L P 例題 3) の操作を さだけを変 とする 重力加速 発展例題20 振動する台上の物体の運動 図のように、ばね定数kの軽いばねの下端を固定し,上端に質量Mの 水平な台Bを取りつけ,その上に質量mの物体Aをのせた装置がある。 物体Aと台Bを, つりあいの位置を中心に鉛直方向に単振動をさせる。 このとき,物体Aが台Bからはなれることがないとすると, AとBは同 じ単振動をする。重力加速度の大きさをgとして,次の各問に答えよ。 (1) 装置全体がつりあいの状態にあるとき,自然長からのばねの縮み 4 はいくらか。 (2) 台Bとともに単振動をしている, 物体Aの加速度αはいくらか。 鉛直上向きを正, Aのつりあいの位置からの変位をxとして, 加速度αをxの関数として表せ。 (3) 台Bが物体Aを押す力を,Aのつりあいの位置からの変位xの関数として表せ。 (4) 台Bが最高点に達したとき, 台Bが物体Aを押す力fがちょうど0になったとする。 このときの単振動の振幅ro を,M,m,k,g を用いて表せ。 (1) (5) 台Bをつりあいの位置から√2 だけ押し下げ, 静かにはなすと, 物体Aは, つり あいの位置からの変位がx のところで台Bからはなれた。 変位 x1, およびそのとき の物体Aの速さを, M, m, k, g を用いてそれぞれ表せ。 (京都産業大改) 指針 (1) 装置全体について, 力のつり あいの式を立てる。 (2) A,Bが一体となって運動しているので, A とBを一体とみなして運動方程式を立てる。 (3) (4) Aにはたらく力を考え, Aについての運 動方程式から, 力を求める。 (4) は, (3) 結果を利用する。 (5) AがBからはなれるのは, f = 0 のときであ る。また, 単振動におけるエネルギー保存の法 則では, 運動エネルギーと復元力による位置エ ネルギーの和は一定である。 復元力による位置 エネルギーは, つりあいの位置からの変位xを 用いて, kx2/2 と表される。 AkAl ■解説 (1) AとBを 一体とみなす。 力のつりあ いから, kAl-(M+m)g=0 M+m k A g B 41= A (2) AとBを一体とみなす と,変位xのときに受ける B 力は、図のように示される。 運動方程式を立てると, (M+m)g k(Al-x) ↑a (M+m)g (M+m)a=k(Al-x)-(M+m)g k kal-(M+m)g=0 を用いて, a =-- M+m x (3) Aが受ける力は,図の ように示される。 Aの運動 方程式を立てると, ma=f-mg f=m (g+a) k M+m M+m k v= 発展問題 235, 236 A g B A D**.24 B g ro= m k =mg- 東心平本全第一 (4) このとき,Aは振動の端に達しており, (3) の式でx=r のとき, f = 0 になったと考えら れる。 0= m (g-kmro) M mg M+m k (5) AがBからはなれるのは, f = 0 になるとき である。 (4) の結果から, 変位 x, は, Ĵa x r に値を代入して, vを求めると M+m k 第Ⅱ章 g x₁=ro= はなれたときのA,Bの速さをvとする。Bを √2yo だけ押し下げてはなした直後とAとB がはなれるときとでは, AとBの単振動のエネ ルギーの和は保存される。 単振動におけるエネ ルギー保存の法則を用いると、 1/2 k (√2 r.) ² = 1 {kx²³² + 1/2 (M+m) v² 9. 単振動 11

解決済み 回答数: 1
物理 高校生

ここの条件は問題中でどういう役割をしますか?

56 Ⅰ章 力と運動 発展例題 8 静止摩擦力 図のように,重さwの物体PとおもりQを軽い糸でつな に回転する滑車に糸をかける。 物体PとおもりQが静止す るためには,Qの重さはどのような範囲にあればよいか。 いで、水平とのなす角が0の斜面の上端にある, なめらか ただし,Pと斜面との間の静止摩擦係数をμ(μ <tane)と する。 指針 Qの重さが求める範囲の最大値 W1 のとき,Pはすべり上がる直前であり, 最小値 W2のとき,Pはすべりおりる直前である。 それぞれの状態において, Pは動こうとする向 きと逆向きに最大摩擦力を受けている。このこと に注意して,各状態の力のつりあいの式を立てる。 解説 Pがすべり上がる直前, すべりおり る直前のそれぞれにおいて, Qにはたらく力はつ りあっており,Pが糸から受ける張力はそれぞれ W1, W2 に等しい。 また, Pが受ける垂直抗力を N, 最大摩擦力を F とすると, Fo=μN=μwcoso 各状態でPが受ける力は図のようになる。 すべり 上がる直前の力のつりあいから, W1 = wsino+μwcosa=w(sino+μcose) NA wsine 指針 AとBの間では, 動摩擦力がはたら いている。Bが運動方向に受ける力は動摩擦力 μ'mg のみで、Bは右向きに加速しており, Aか ら右向きに動摩擦力を受けている。 Bが受ける動摩擦力の反作用として、Aは左向 きに動摩擦力μ'maを受け 発展例題 9 重ねた物体の運動 水平な床の上に,質量 2mの物体Aを置き, A の上に質量mの物体Bをのせる。 床とAとの間に 摩擦はなく, AとBとの間の動摩擦係数をμ'と する。 Aをあるカfで右向きに引くと, AとBと Fo so すべり上がる直前 A 解説 のように れぞれの wcose w A:2 f P B S wsine 発展問題 119 N. A w すべりおりる直前の力のつりあいから, μwcoso+W2=wsind W2=w(sine-μcose) M ここで, W2=wcose (tan0-μ) であり, 問題の条 件から, "<tan0 なので, W2 > 0 となり,題意を 満たしている。したがって, 重さWの範囲は, w (sino-μ cose)≦W≦w(sino+μcos0 ) W2 Fo wcos o So すべりおりる直前 の間ですべりが生じ, 別々に運動した。 重力加速度の大きさをgとして, AとBのそれ ぞれの床に対する加速度の大きさを求めよ。 Q 発展問題 125 の力は、

回答募集中 回答数: 0
物理 高校生

(1)の問題 運動エネルギーの変化と仕事の関係の式 v∧2-v0∧2=2axを使っていますけど この場合距離xの部分には5.0mと行って帰ってくる分も追加しなくて良いのですか? 行って帰ってくる間に速度のベクトルが逆向きになって 運動エネルギーも変わっていると思うのです

発展例題2 等加速度直線運動 斜面上の点Oから, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち,下 降し始めて, 点0 から 5.0m はなれた点Qを速さ 4.0m/s で斜面下向きに通過し、点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 (2) ボールを投げてから, 点Pに達するのは何s後か。また, OP間の距離は何mか。 (3) ボールの速度と投げてからの時間との関係を表すv-tグラフを描け。 (4) ボールを投げてから, 点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 指針 時間t が与えられていないので v²-vo2=2ax を用いて加速度を求める。 また, 最 高点Pにおける速度は0となる。 v-tグラフを 描くには、速度と時間との関係を式で表す。 解説 (1) 点0, Qにおける速度, OQ 間 の変位の値をv²-v2=2ax に代入する。 (−4.0)²-6.02= 2xα×5.0 a=-2.0m/s2 (2) 点Pでは速度が0になるので, v=v+at か ら, 0=6.0-2.0×t t=3.0s 3.0s後 S OP 間の距離は,x=vot+ at から, +/12/4から、 x = 6.0×3.0+ 1/23 x(-2.0)×3.02=9.0m (3) 投げてからt [s]後の速度v[m/s] は, v=v₁+athb, v = 6.0-2.0t v-tグラフは, 図のようになる。 v (m/s) 6.0 0 -4.0 -6.0 1 5.0m 発展問題 23, 24,25 (4) v=votat から, 16.0m/s OP間の距離 P PQ間の距離 4 25 6 t〔s〕 -4.0 =6.0+ (-2.0) xt 6.0×3.0 (5.0 -3.0)×4.0 + 2 2 5.0s 後 t=5.0s ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ、 =13.0m Q Point ■Point v-tグラフで, t軸よりも下の部 分の面積は、負の向きに進んだ距離を表す。

未解決 回答数: 1
物理 高校生

力のつり合い 解答の図示が行われているところで、なんでそこがcosθになるのかがわかりません。教えてください🙇

発展例題 13 斜面上の物体にはたらく力のつりあい 傾きの角が30°のなめらかな斜面上にある, 重さ W [N] の物体に, 斜面に平行な 方向に力を加えた場合(図1) と, 水平方向に力を加えた場合 (図2), 物体はともに 斜面上で静止した。 図 1, 2 W Fi W において,物体に加えた力の 大きさを Fi〔N〕, F2〔N〕, 物 体が斜面から受ける垂直抗 力の大きさを Ni〔N〕, N2〔N〕 図 1 とするとき,F, と F2, N1 と N2 の大小関係をそれぞれ式で表せ 考え方 解答 図1′から, F1=Wsin30°- =/w -W〔N〕 (001) 図1:斜面に平行な方向と垂直な方向に力を分解 図2: 水平方向と鉛直方向に力を分解 - N₁=W cos30°= √3W(N) 2 >US 図2′から, F2=N2sin30°,N2cos30°=W 小 よって, N2=cos30° W 2√3 3 別解 図1”:力Fと垂直抗力 Nの合 力が,重力 W とつりあう。 図2":力 F2と重力 W の合力が 垂直抗力 N2 とつりあう。 図から明らかに, Ni<N2 130° 3010082 N₁ さてWsin30。 toitara 30° W 図1 30° W EROT HOW 図 1 + W cos30° 30° F1 コ各方向ごとの力のつりあい A>N₂ RENOZ) H N₂sin30° 図 2 ACCESS 3発展問題 A 1複斜面上の2物体の力のつりあい 図のように、開 傾きの角が30°60°のなめらかな複斜面の上に, 重さ F₂ REA 3 W(N), F₂=N₂=¹3W(N) +31(061) _Fi<F₂, №₁<N₂ √3 N₂ HOBO STEE 30°W 図2 $120SS N₂cos30° Be F2 A WA 30° WYS Mamm 図 2" F2 また,F1=Wsin30°= 1/21W[N], F2=Wtan30°= 1/3W [N] よって,Fi<F2 ŠŠ √3 とに立てる (S) ・頻出重要 B

解決済み 回答数: 1