学年

教科

質問の種類

物理 高校生

⑵で「抵抗をつなぐと」とありますが、抵抗をつなぐ前にも誘導電流は生じているのではないのでしょうか? 解説を読むと抵抗がついてから誘導電流が生じているような書き方をしていて、この説明の真意は何なのかが分かりません。 拙い説明で申し訳ないですが、回答よろしくお願いします🙇🏻‍♀️

At 11 電磁誘導 指針 図aのような, 巻数 100, 断面積 3.0 |×10-4m² のコイル内の磁束密度 |B[T] が,図b のグラフのように 変化する。磁束密度はコイル内で は一様であるとし,図aの矢印の 向きを正とする。 B B[T] A a 4.0- B 打ち消す 2.0 t(s) 磁束の変化 図 b (1) コイルのAB間に生じる誘導起電力の大きさは何Vか。 (2) AB間に抵抗をつなぐと, 流れる電流の向きは①か② のどちらか。 ①A→コイル→B ②B→コイル→A 誘導起電力の大きさは,v=-N24」で求める。誘導起電力の向きは、レンツの法則 (p.309) で判断する。 解 (1) ⊿t 2.0sの間に磁束密度は⊿B=4.0Tだけ増加している。 「Ø=BS」 (p.297(70) 式) より, 磁束の変化 40と4B の間には, 4D = ⊿BS. が成りたつ。 ファラデーの電磁誘導の法則より V =|-2|= 40 AB S N = =N- At At = = 100 x 4.0 × ( 3.0×10 -4) = 6.0×10-2V 2.0 誘導起電力を求める際 は、磁束密度の変化で はなく磁束の変化を考 える点に注意する。 (2) AB間に抵抗をつなぐと, コイルには外から加えられた磁束の変化を 打ち消すために,下向きに磁束を生じるような誘導電流(B→コイル →A→抵抗の向き)が流れる。よって ② 14 断面積 S[m²], 巻数 Nのコイル内の磁束密 度B[T] が, 図のように変化する。 磁場はコ イル内では一様であるとする。 ①~③の区間 B↑ Bo

解決済み 回答数: 1
物理 高校生

この問題の(4)で(ΔB/B)^2の項は無視してるのにΔB/Bの項は無視していないのはなぜですか?

133. <ベータトロン〉 時間変化する磁場による荷電粒子の加速について考えよう。 図のように、原点Oを通り互いに直交するx軸, y 軸, z軸をと る。 AB (1) 等速円運動する荷電粒子の速さを求めよ。 2軸の正の向きに一様で時間変化しない磁場が加えられてお り,その磁束密度の大きさをBとする。この磁場中に質量 m, 電荷 g (>0) の荷電粒子を入射したところ,xy 平面上で原点O を中心とする半径rの等速円運動をした。 y m x v 荷電粒子の円運動は,半径rの円形コイルを流れる電流とみなすことができ,円形コイル を貫く磁束はBで与えられる。このことを用いて, 磁場を時間変化させたときの荷電粒 子の運動について考える。ただし,この電流がつくる磁場は無視できるとする。円形コイル 内部と円形コイル上の磁束密度の大きさを時間とともに一様に増加させる。増加を開始して から微小時間 ⊿t 経過したとき,磁束密度の大きさは微小量⊿B (>0) だけ増加した。 なお、 (4)(5)では2つ以上の微小量どうしの積は無視して計算すること。 (2) 円形コイルに誘導される電場の大きさを求めよ。 闘 (3) 誘導された電場により荷電粒子の速さは増加する。 その理由を述べ, 速さの微小な増加 量⊿v を求めよ。 *(4)磁場の増加により円運動の半径は変わらないと仮定して,荷電粒子にはたらくローレン ッカの大きさと遠心力の大きさを計算し,ローレンツ力は遠心力より大きいことを示せ。 したがって,磁束密度を一様に増加させると軌道が円からずれる。 元の円軌道を保つには, 磁束密度の増加量を一様ではなくすればよい。 このとき,円形コイル内部の磁束密度の大き さの平均値をĒとすると,円形コイルを貫く磁束は2万で与えられる。微小時間⊿t経過 する間に, Bを微小量 4B 増加させ, 円形コイル上の磁束密度の大きさを⊿B'増加させたと ころ,もとの円軌道が保たれた。だだし、磁束密度の大きさはz軸からの距離と時間だけに 依存するものとする。 (8) AB4B' の比 AB AB' を求めよ。 〔22 大阪公立大〕

解決済み 回答数: 1
物理 高校生

なぜ右向きを正に運動方程式を立てるのかがわかりません 左に動くのになぜ左向きが正ではないのでしょうか?

(1) 図1のように質量の無視できるばねを鉛直につり下げる. 鉛直下向きを正としてy軸をと りばねが自然長であるときのばねの先端を原点とする. 大きさの無視できる質量mの物 体をばねの先端にとりつけると、位置y=I1-a で物体に働く重力とばねの復元方がつ り合い,物体は静止した.ただし,ばね定数を重力加速度の大きさを9とする。物体を下 方に引いて静かに手を離すと, 物体はy軸方向に y を中心とする単振動をはじめた.物体の 座標をy, 加速度をαy とすると, 運動方程式は I1-b と書ける. (2)次に図2のように、摩擦のある水平面上でばね定数kのばねの一端を固定し、他端に質量 mの物体をとりつける.物体の運動方向にx軸をとり ばねが自然長であるときの物体の位 置を原点Oにとる. 物体と水平面との間の静止摩擦係数!!.動摩擦係数は定数とする. こ こでは、物体の速さが0となるときは、物体に働く摩擦力として、最大で静止摩擦係数を用い た摩擦力が働くものとする. 位置x (0) まで物体を引いて静かに手を放すと, 物体はxがあ る値d以下のときには動かず,dより大きいときには滑り出した. dは I 2 と表される. 物体を位置xo(>d)まで引いて, 時刻 t = 0に静かに手を放すと物体は動き出し,位置 (0)ではじめて速さが0となった. この間の物体の運動方程式は、 物体の座標をx, 加速 度をα とすると. I3-a と書ける.この方程式を(1)の場合と比較すると, この運動は, I3-b を中心とする単振動である. x1 は x を用いて14-a と表される.x で物 体が静止し続けるためのxの最大値 Xは 14-b である. xc= 以下では,x > Xとする. 物体はx から再び動き出し, x2 ( d) で再び速さが0となっ また、この間の物体の運動方程式は I5-a と書け, x2 は x を用いて I5-b と表され る.その後,物体は再度 x2 から動き出したが, x(<0) で速さが0となり再び動き出すこと はなかった. 力学的エネルギーの変化が動摩擦力の行った仕事に等しいことを利用すると,x3 に達するまでに物体が運動した全行程の長さは, x0 と x3 を用いて 16-a と表すことがで きる。 物体の位置と時刻との関係をグラフで表すと図3の 16-b のようになる.

解決済み 回答数: 1
物理 高校生

この(1)においてs→m1→Dへの光は波が9個進むのにおいて、s→m2→Dへの光は進まないと考えてよろしいのですか? そう考えると9回強め合う理由が納得いくのですが、光は常に出てるのでs→m2→Dへの波も動くと思ってしまいましたが説明お願いします

30 30 波動 8 光の干渉 Sは任意の波長の単色平行光 線を取り出せる光源 Hは光の 一部を通し一部を反射する半透 明鏡(厚さは無視) Mt. M2 は 光線に垂直に置かれた平面鏡 Dは光の検出器である。 Sから 出た光線は,Hを通りで反 射され再びHで反射されてDに 入る光線と、はじめHで反射さ Ma S H Mi OD れたあとMで再び反射されてからHを通りDに入る光線とに分かれ る。この2つの光線がDで干渉する。 装置全体は真空中に置かれて いる。 はじめ光路差はなく、光はDで強め合っているとする。 光の波長を 5.00×10-〔m〕 とし, M. を図のように距離だけ右へゆっくり平行 移動する。 移動を始めてからd=2.25×10 〔mm〕 までに, Dでは光 が (1) 回強め合うのが観測された。 次にM」 をその位置(平行移 動した位置)で固定する。 そこで、波長をゆっくり減少させていった ら (2) [m] で再び強め合った。 次に波長を 5.00 ×10-7 (m)にも とし、今度はゆっくりと波長を増加させていったら、はじめに (3)〔m)で弱め合った。 最後に、波長を 5.00 ×10 [m]にもど し、HとM』の間に屈折率nが1,500で、厚さが48.8 [μm〕sts 49.4 [μm〕 であることがわかっている平行平面膜を、光線に直交する ように置いたら、光はやはり強め合った。これから、この膜の厚さは (4) [μm) であることがわかる。 (東京理科大)

解決済み 回答数: 1