学年

教科

質問の種類

物理 高校生

写真の赤線部では交流回路でのコイル、コンデンサーはそれぞれ (電圧の実効値)=(リアクタンス)×(電流の実効値)という式が成り立つと書かれていますが、この電流電圧の実効値は抵抗を流れる電流と同じ(最大電圧(流)の1/√2倍した)数値ですか?最大電圧(流)を1/√2倍したもの... 続きを読む

■コンデンサーのリアクタンス 式(27)より、Io=ωCV であるからwC=- 1 とおいて Vo=X。 と表 Xc すと、電流の最大値 Ⅰ と電圧の最大値 V。 との間には, オームの法則と類 似の関係が成り立っており, Xc は電気抵抗に相当する物理量となってい -p.250 ることがわかる。 このXc をコンデンサーのリアクタンス (容量リアクタ ンス)といい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コンデンサーのリアクタンス 1 (28) XcwC 式(24)より、Io= Xc [Ω] コンデンサーのリアクタンス w [rad/s] 角周波数 C〔F〕 電気容量 コンデンサーでは, 角周波数 ωや電気容量Cが大きいほどリアクタンス 小さくなり, 電流は流れやすくなる。 また, 電圧の実効値 Ve と電流の 効値との間にも同様に,Ve=Xce という関係が成り立つ。 コイルのリアクタンス Vo であるから,wL=Xとおいて Vo=X。 と表す WL と、電流の最大値と電圧の最大値 V。 との間には,オームの法則と類似 の関係が成り立っており, XL は電気抵抗に相当する物理量となっている reactance ことがわかる。 このXL をコイルのリアクタンス (誘導リアクタンス)と いい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コイルのリアクタンス XL=wL (25) XL,[Ω] FELL FAC コイルのリアクタンス w [rad/s] 角周波数 hata To 4 10 L [H] 自己インダクタンス スが大きくなり, 電流は流れにくくなる。 また, 電圧の実効値 V と電 実効値との間にも同様に, Ve = Xile という関係が成り立つ。 コイルでは, 角周波数や自己インダクタンスLが大きいほどリアクタ

未解決 回答数: 1
物理 高校生

コイルの誘導起電力についてですが、自己誘導で生じる起電力は上図のように、電池Vと同じ電位降下を起こす「抵抗」のような扱いをしていて回路内には電流が流れていますが、(だからキルヒホッフの法則より、 V=L(di/dt)と表しているのだと思います。)相互誘導のとき、二次コイルに... 続きを読む

V P P 電流 磁場 m 巻数 N1 コイル 1 イ数 巻数 N2 コイル 2 (2) コイルの磁気エネルギー 10 で、 コンデンサーの静電エネルギーU=12cm=12/02 に投入した仕事を計算することで説明したね。 導くときに、コンデンサーを電気量が0CからQ [C] まで充電するの が投入する仕事を計算することで、コイルの磁気エネルギーの公式を 同じようにコイルの電流を0AからⅠ [A] まで増やすときに, 電源 導いてみよう。 まず、図13の回路で特殊な電 源によって, 自己インダクタンス Lのコイルに、 図14のように時刻 とともに増大する電流を強制的 に流していこう。 このとき, コイルに発生してい る誘導起電力Vは, POONTO (p.244) の式より, V = L di dt 図14のグラフの傾き I [A]増加 T〔s] で 1 =Lx3 ...1 1 2 X TXI ...(2) [ 図14の 三角形 の底辺 [ 電源 V 高さ i増加させる 図13 i 増加 T の式を これは、図13より, 電源の電 0 圧Vと等しいね。 図14 一方、このt=0からt=T〔s] ま での間に、電源が 「持ち上げた」 電気量をQとするよ。 この電気量Q は図14の.i-tグラフの下の面積と等しいので、 Q=(図14のi-tグラフの下の面積) イヤ! 電流 (1秒あたりに通過する電気量) I 傾き itグラフの 下の面積は 通過電気量Q → 時刻 第19章 コイルの性質 251

未解決 回答数: 1
物理 高校生

写真の青線部についてですが、誘導起電力がは電源の電圧と等しくなる。これはキルヒホッフの法則から言えることだと思うのですが、ここで疑問なのは、なぜ電池と誘導起電力は図のように打ち消し合うような向き? にかかっているのに、電流は流れるのですか?電池の+極どうし、-極どうしを繋げ... 続きを読む

(2) コイルの磁気エネルギー 10 で、 コンデンサーの静電エネルギーU=1212CV2=120262の式を Q2 導くときに,コンデンサーを電気量が0CからQ [C] まで充電するの に投入した仕事を計算することで説明したね。 同じようにコイルの電流を0AからⅠ[A] まで増やすときに,電源 が投入する仕事を計算することで, コイルの磁気エネルギーの公式を 導いてみよう。 まず、図13の回路で特殊な電 源によって, 自己インダクタンス Lのコイルに,図14のように時刻 t とともに増大する電流żを強制的増加させる に流していこう。 このとき, コイルに発生してい る誘導起電力Vは, POONTO (p.244) の式より, di dt 図14のi-tグラフの傾き V = L =Lx I [A][増加 T〔s] で 電源 V 図14の 三角形 の底辺 図 13 dt T 電流 ( 1秒あたりに通過する電気量) I傾き i 増加イヤ! T V これは、図13より, 電源の電 圧Vと等しいね。 図 14 一方,このt=0からt=T〔s] ま での間に,電源が「持ち上げた」 電気量をQとするよ。 この電気量Q は図14の, i-tグラフの下の面積と等しいので, Q=(図14のi-tグラフの下の面積) =1/12/201 xTxI...② 高さ i-tグラフの 下の面積は 通過電気量Q 時刻 第19章 コイルの性質 251

未解決 回答数: 1