学年

教科

質問の種類

物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0