学年

教科

質問の種類

物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

142 熱 49 熱力学 断熱材で作られた円筒形の容器に〔mol]の 単原子分子の理想気体が入っていて、圧力と温 TOK] は大気のそれと等しい。 ピストンMの 質量は 〔kg] で滑らかに動く。はじめMはス トッパーAで止まっており、容器の底からの高 さはLQm] である。 気体定数をR [J/mol・K], 重力加速度(m/s²] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ, 温度が T1 [K] になったときM が上に動き始めた。温度 T と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け高さが2.2L[m]となった。このとき の温度 T [K] を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W 〔J〕 と気体に加えた熱量 Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして,外力を加えてMを ゆっくりと押し込み、元の高さL 〔m〕まで戻した。 このときの気体 の温度 T3 〔K〕 を求めよ。 また, このとき気体がされた仕事 W 〔J〕 を求めよ。 ただし、この断熱変化の過程では圧力と体積Vの間に (京都工繊大) はPV =一定の関係がある。 Base M ヒーター 10000 Cv= Level (1), (2)★ (3)★ Point & Hint (1) 前後の状態方程式と、ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では, 気体がする仕事 = PAVとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 γは比熱比とよばれ, y=Cp/Cv ここで は単原子なので,y= =1/12/2/12/2R=7/3/3 となっている。あとは第1法則の問題。 5 h= 単原子分子気体 nRT U= 3 5 = 2R CP=R 2 ※ この3式は「単原子」のとき LECTURE 初めの気体の状態方程式は ピストンが動き始めるときの圧力をPとすると PSL = nRT …..……② (1) そして,このときのピストンのつり合いより PS = Pos+Mg...... ③ T₁=To+ _MgL nR4 ①〜③ より 定積変化だから より (2 そして (2) Pi での定圧変化が起こる。 状態方程式より P₁S³/L=nRT₂ また, Q=nCvAT= PSL = nRTo ...... ① T₂ = ³2 T₁ = 3 (To+ MgL nR W2 = Pi4V = Pi P.(S. 3/L-SL) Q2=nCpAT = n 状態方程式より 5 2 第1法則より より 49 熱力学 nR(T₁-To) = MgL 2 2 T3= ③ -T₁ (3) 高さまで押し込んだときの圧力をP3とすると P.(S-L)* = P.(SL) P3= 3 PS を用いて. Ws = Mg AU』を調べ ( 4U2=2R(T-T)) 第1法則 4U2 = Q2+(-Wa) を用いて Qを求めることもできるが、まわりくどい。 =1/12P.SL=1/12nRT=1/12(nRT,+MgL) ②を用いた .. T = n. 52 R (T₂ - T₁) = (nRT. + MgL) 143 ピストンが動いて も上図の状況は変 P.S わらない。 つまり, 圧力 P1 は一定 'P・SL = nRT3 ...... ⑤ - (3) ³T = (3) (T. + MgL) 'T nR 2nR (T₁-T₂) = 0 + W₁ P1 = (2)(2)-1) (nRT. + MgL)

回答募集中 回答数: 0
物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

49 熱力学 断熱材で作られた円筒形の容器に〔[〔mol] の 単原子分子の理想気体が入っていて, 圧力と温 度TOK]は大気のそれと等しい。 ピストンMの 質量は Mi [kg] で滑らかに動く。はじめMはス トッパーAで止まっており, 容器の底からの高 さはL][m]である。気体定数をRJ/mol・K], 重力加速度を[m/s2] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ、温度が T1 〔K〕 になったときM が上に動き始めた。 温度 T1 と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け、高さが12/23L 〔m] となった。このとき の温度T2 〔K〕を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W2 〔J〕 と気体に加えた熱量Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして, 外力を加えてMを ゆっくりと押し込み, 元の高さL 〔m〕まで戻した。 このときの気体 の温度 T 〔K〕を求めよ。 また,このとき気体がされた仕事 W [J] を求めよ。 ただし, この断熱変化の過程では圧力Pと体積Vの間に は PV 3 =一定の関係がある。 (京都工繊大) Base 771 3 Level (1),(2)★ (3)★ Point & Hint Cv= Cp= ※ この3式は「単原子」のとき (1) 前後の状態方程式と, ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では,気体がする仕事=P⊿Vとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 ♪は比熱比とよばれ, y=Cp/Cv ここで は単原子なので, y = = 12/12/12/2=121238 となっている。あとは第1法則の問題。 M -R ヒーター 10000 単原子分子気体 3 U= -nRT 2 5 R LECTURE (1) 初めの気体の状態方程式は PSL = nRTo ...... ① ピストンが動き始めるときの圧力をPとすると PSL = RT ...... ② そして、このときのピストンのつり合いより PS = PS+Mg..... ③ MgL Ti = To+ nR QinCvAT=- R(T₁-To) = 32 MgL ① ~ ③より 定積変化だから P1での定圧変化が起こる。状態方程式より PS・・ S/L=nRT2 4 (2) より そして そ T₁ = 3 T₁ = 2 (T. + Mg L nR W₁ = P₁AV = P₁ (S. 3/L-SL) より 49 熱力学 状態方程式より (3) 高さまで押し込んだときの圧力を P3 とすると B 第1法則より PS T3 = Mg また, Q2=nCAT=n212R(T2-T)=(nRT+MgL) 4U』を調べ ( 4U2=220R (T-T) 第1法則 4U2 = Q2+(-W)を用いて 4U₂ Qを求めることもできるが、まわりくどい。 143 P.(SL) = P.(SL) ( ∴. P3= P1 PS ピストンが動いて も上図の状況は変 わらない。 つまり, 圧力 P1 は一定 =1/23PSL=/1/2nRT=1/12(nRT+MgL) ②を用いた (2) *P₁.SL = nRT .... (3) ³T₁ = (3) ³( T. + MgL) 'T= nR 2nR(T₁-T₂) = 0+W₁ W₁ = (2) ² (2) ³-1} (nRT. + MgL)

回答募集中 回答数: 0
物理 高校生

静電気・保存則の問題です。 (5)の力学的エネルギー保存則の式の右辺について、Aはx軸の-方向に動いているのに-1/2mvA^2ではなく1/2mvA^2になるのかが分かりません。 教えてください。

AB間の距離が2rm[m]のときのAの逃さ v [m/s] を求めよ。 量m(kg]の粒子Aが最初, Bから十分離れた位置にあり,x軸上正の 方向に遊度 (m/s)で動いている。 クーロン定数を:N·m'/C°)と (4) AがBに最も近づいたときの, Aの速度u [m/s]を求めよ。ま その後AとBは互いに反発し遠さかる。十分に時間がたった後 1/静電気 +QIC)を帯びた質量 AM (kg)の粒子Bが r軸 上の点Pに静止している。 また。+q[C) を番びた賞 m,q M.Q Vo 河合計 B 11 静電気保存則 43 HCHEE P 島 A5判 (1) 無限遠点での位置エネルギーは U=g×0=0 で, AB間の距離がr の とき U=qr kQ と表されるから,力学的エネルギー保存則より 5) 量4に らmu+0= 0+. kqQ 2kqQ mv? Yo Yo = (2) 前問と同様に ら +0=;mu+ kqQ 2r。 mu。 し, 重力や粒子の大きさは無視できるものとする。 Tath カ学 mu*+mu? V。 リ= V2 良間 類出 浜島 A5判 (3) 加速度が最大となるのは, 静電気力が最大になると きで、AがBに最も近づいたときだから 登信 (1) AB間の距離の最小値 o [m] を求めよ。 加速度のこと は力に聞け! mVo 9Q kqQ 『max- mr 4kqQ mamax=k mu 次に、粒子Bが×軸上を自由に動ける場合について, (4) 最接近のときの相対速度は0で, AとBの速度 は等しくなるから,運動量保存則より (止まった な、AB間の距離 [m]を求めよ。 mb = mu+ Mu m m+M 。 物体系についての力学的エネルギー保存則より . u= mv わ学 名問 浜島 A5判 (岡山大) のAの速度(m/s)を求めよ。 mu=me+ kqQ -Mu*+ Y」 Bから見れば AはUターン 0. 上で求めたuを代入して Y= 2kqQ(m+ M) mMu? Level (1)~(3) ★ (4),(5)★ kqQ はAとB全体でつくり出したもので, (1), (2)では 位置エネルギーU= Bが固定されているためAだけで使えたのである。力学でいえば, AとBがばね で結ばれているときの弾性エネルギーの扱いに似ている。 Point & Hint カ学 (1(2) 力学的エネルギー保存則を用いる。 位置エネルギーUは U=qVと (5) Bの速度をUpとすると, 運動量保存則より muo= mua+ Mus …① 力学的エネルギー保存則より kQ V= からつくり出す。 らく 物理 河合 B6 2mu =mu+Mug ……② | 運動方程式 ma = F を思い出したい。 -mv? (3)加速度といえば、 (4)物体系に働く外力がないから…。最接近のとき, Bから見てAは一瞬止まる から…。 AB間の距離については, A·B 全体について(物体系について)カ学 的エネルギー保存則を用いる。 位置エネルギーの形は前半と変わらない。 (5) 2つの保存則の連立。 Aと Bは十分離れるので位置エネルギーは0としてよ 0.2よりUを消去すると m-M m+M U= Vの正負はmとMの大小関係で決まる。 解も出るが、Aは静電気力で減速されているので不適 (初めの状態に対応)。 なお,計算からは ひ、= w という 物理 い。 別解弾性衝突とみなしてもよい。反発係数 e=D1 だから VA-Us = -1× (v0-0) ③ のと3の連立で解くと早い。 河 htt E-r kp

未解決 回答数: 1
物理 高校生

名問の森電磁気10番です。お願いします!! (5)までは理解しているのですが、(6)がわかりません。保存則の等式で、右辺の電位が0になる理由がわからないです。確かに、点電荷A、Bからなる電位は点Oでは0なのでしょうが、一様電場からの静電気力は右向きですので、左に行くほど位置... 続きを読む

F=qE[N] の力を受ける。正電荷はEと同じ向きの力を, 負電荷は逆向きの 電気分野の基礎は何といってもクーロンの法則だが, 実用上は電場(電界)Eと 38 電磁気 10 静電気 +Q[C)の点電荷をA点に, -Q(C) の点電荷をB点に固 定する。AB間の距離は21 [m]であり,ABの中点をO とし、0点からL[m]離れた ABの垂直2等分線上の点を Cとする。クーロンの法則の 比例定数をk [N.m'/C°] と 無限遠を0[V]とする。 0点とC点での電場(電界)の向きと強さをそれぞれ求めよ。 (210点の電位と, 線分OBの中点Mの電位を求めよ。 ta[C]の電荷をもつ質量m[kg]の小球PをM点に置き, 静かに 横す。 Pが0点を通るときの速さを求めよ。 次にPをC点に置き, 線分ABに平行に一様な電場をかける。する と、Pに働く静電気力は, 一様な電場をかける前に比べて, 向きが逆 転し大きさが半分となった。 (一様な電場の向きと強さを求めよ。 PをC点からM点まで静かに移動させた。この間に外力のした仕 事を求めよ。 C +Q 0 M A B M点でPを静かに放すと, Pは左へ動き出し, やがて0点に達し、 一瞬静止した。 このことからLを1で表せ。 Level (1) 0 : ★★ C:★ (2)~(4) ★ (5)★ (6)★★ Point & Hint 電位Vが重要な役割りを果たす。 その

回答募集中 回答数: 0
物理 高校生

(3)で小球が最高点に達した時、2物体の速度が等しくなる理由を教えて下さい。 解説を読んでも分からなかったです。 どなたかよろしくお願いします。

17 保存則 53 17 保存則 曲面 AB と突起Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパーSに 接している。Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量 m(m<M)の小 A小球 m W S M B 床 球を静かに放した。小球は曲面を滑り降りて突起w に弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな く,重力加速度をgとする。 (1) 突起Wと衝突する直前の小球の速さはいくらか。 (2) 小球が Wと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り, 最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパー Sをはずして,台が静止した状態で,小球をA点 で静かに放す。 (4) Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 (5) Wとの衝突後,小球が達する最高点の高さはいくらか。 F (東京電機大+日本大) Level(1) ★★ (2) ★ (3) ★ (4), (5) ★★ Point & Hint (2) 弾性衝突は運動エネルギーが保存される衝突だが, 反発係数 e=1 で扱いた い。 (3) 最高点に達したとき, 小球は台に対して一瞬止まる。水平方向には外力がない ので,ある保存則が成り立つ。後半はもう一つの保存則を用いる。 ただし, 物体 系に対して適用する。 (4) 2つの保存則の成立。 (5) (3)と同様に考えるのが正攻法だが, ……もっとスッキリと解ける。

未解決 回答数: 1
物理 高校生

問題とは直接関係ないのですが、(7)の図のx1→x3→x4で、等速度運動しないのはなぜか教えて頂けませんか? 静電気力が小さくなることで、x1以降は摩擦力が静電気力と釣り合うようになり、加速度が0になることから等速度運動する、という風にはならないのでしょうか?

(1) nまでは等速度運動だから、力がつり合う。点Oから離れるにしたが。、 て左向きの静電気力 qEが増し、それに応じて静止摩擦力が右向きに地」 ていく。やがて、おでは最大摩擦力umg に達する。そこでの電場の強さ E= より 電気 13 静電気·単振動 47 HE 13 静電気·単振動 水平右向きにx軸をとり,原点を0 電場 電場 とする。水平方向に -ax で表される -出mg aq q*a =mg 電場(電界)をかける(xは座標で, aは 図P 正の定数)。そして,水平右向きにベ ルトを一定の速さで動かす。正電荷q は向きを含めて 一g"axと表せる(ばねの弾性力と類似)ので ド=-aqx + mmg ベルト (2) Pはベルトに対して左へ滑るので、動摩擦力は右向きに働く。静電気。 を帯びた質量 mの小物体Pを点Oの位置でベルト上に置くと,Pは F=-aq (x-mg) aq (3) 上式を変形すると ベルトに対して滑ることなく動き始めた。Pとベルトの間の静止摩 これよりPはェ= mg(< x)を振動中心として単振動をすることが aq 擦係数をL, 動摩擦係数を μ(<μ)とし, 重力加速度をgとする。 ベルトは帯電しないものとする。 分かる(復元力の比例定数K=aq)。 もちろん。振動中心で最大の速さとなるので 出mg aq Pはやがて位置:x=(1) ]で滑り出す。 その後のPに働く合力F は,Pの位置xを用いて, F=(2) (4)単振動のエネルギー保存則(Fエッセンス(上)p79)より と表せる。Pはx=bで一瞬 静止した後,左へ戻り, 位置 x2=D (3)で最大の速さ Um=L(4) となる。x=bから x2に至るまでの時間は カ=D(5) である。その 後,Pは x =(6) で再び一瞬静止し, 右へ動くが, x4=(7) でベルトに対して静止し, 再び滑り出すまでには, ベルトの速さを (関西大+大阪大) K(b-xx)?= るV | aq = (b-mg aq V aq m (5) 右端から振動中心に移るまでの時間だから、周期Tの一である。 m- m Vとすると,tz=(8)の時間がかかる。 (6) は左端で、振幅A=b-xだけ、 中心xxの左側にあるので(次図を 参照) =-A= 2xーb=mg なお,(4)は、。=Ao =(bーx)·2x/Tとして求めてもよい。 Level(1), (2) ★ (3)~(6) ★ (7), (8) ★★ ーb aq 会 ( (7) Pは左端から右へ向かって速さを増していく。次図のように, ベルトの 速度Vと同じになるのは, 単振動の対称性から(ベルトに対して滑り始め た)位置xと振動中心をはさんで同じ距離だけ左に離れた位置 xx となる。 Point & Hint 力学としては,ばねに付けられた物体の, 動くべ ルト上での運動と同等である。 自然長 ma P V (2) Pはペルトに対して左へ滑る。 すると動摩擦力 の向きは…。 ベルト V Oms (3)~(6) (2)の合力Fの式から運動 (地面に対する運 動)が確定する。そして,いろいろな量が求められる。ん (7) Pの速度がベルトの速度と一致するのは…。 それまでの運動のもつ対称性 0 を利用したい。 単振動のエネルギー保存則で考えてもよい。振動中心から同じ距離だけ 離れた位置での単振動の位置エネルギーは等しいから, 運動エネルギーが (つまり速さが)等しい。 次図より . = 2xーx= aq mg (2h-) X- = Xー A A 左端 中心 右端 b -V ロー 赤点線は単振動 黒点線は等速V (8) xに達するまでは, Pはベルトに対して左へ滑り, (2)の「Fに従う単振 動であったが、いったんベルトに対して止まると,静止摩擦力に切り替わ り,Xに達するまではベルトと共に等速Vで動く。 ね= 2(x- x) V X-X 2mg ミ) agV

回答募集中 回答数: 0
物理 高校生

名門の森32番の(5)番で質問があるのですが、 最後の三角関数の式は(2/d√k/m cos√k/m(t-π√m/k)はどのように式変形すれば答えに書いてあるようになるのですか? 教えてください。

96 力学 ECHURE (1) Aの座標を と表されるの 32 単振動 ばね定数kの軽いばねを滑 らかな水平面上に置き, 右端 に質量mの小物体Aを付け。 左端を固定する。ばねの方向 にx軸をとり,ばねが自然長 のときのAの位置をx=0 と する。そして、質量3mの物 体BをAに押しつけて, ばね を自然長からdだけ縮めた後。 静かに放す。 (1) 動き始めてからしばらくの間は, AがBを押しながら運動する。 このときAがBを押す力の大きさNをAの位置:の関数として表せ。 (2) AとBが離れるときのAの位置:および, 離れた後のBの速さ u を求めよ。 (3) 動き始めてからAとBが離れるまでの時間 toはいくらか。 (4)Bを放したときを時刻=Qとして, Aの位置xの時間変化を表 すグラフを上の図に描け。 0mmm LAS 0 AはBから」 えて、Aの道 d A: m この式は ばねが自然 性力が左向 一方,F 2。 Sto 0.2カ (2) BがA つまり ばねが縮 然長を超 なお、 の上で 自然 カた(5) t2(to)での Aの速度ムを時刻tの関数として m, k, dを用いて 一体と 時 じゃない 表せ。\まではACBO年院)(山口大+東京学芸大) Level(1)~(3) ★ (4) ★ (5) ★★ (3) 離 Base ばね振り子 (x= Point & Hint O O なる (1)作用·反作用と, xが負の値であるこ とに注意して, 運動方程式を立てる。 (2) 離れるときに注目すべき量は… ? (4) 2つの量を求める必要がある。 (5) 単振動の時間変化は sin ot や cos.ot を用いて表すことができる(位置速度。 加速度,力について)。 周期 m T= 2π\ R m 振動中心は力の 0 O つり合い位置 ※ばねの力のほかに一定の力 と が加わっても周期は不変。 た レ……… F00m-

回答募集中 回答数: 0
物理 高校生

読んでいただいてありがとうございます。 力学の質問があります。 こちらの問題の(2)なのですが、私はカエルの出したエネルギーというのが、どうにも気持ち悪くて、画像2枚目のように力積で考えてみたのですが、答えが合いません。。 どこで間違ってしまっているのでしょうか。 どなた... 続きを読む

カ学 58 天井からつるした滑車の両側に,それぞれ質 量mの皿A, Bをつるし、 皿Aに質量 Mの蛙、 皿Bに同じ質量Mのおもりをのせてつり合わせ る。I, 蛙, おもり以外の質量は無視できる。 この蛙は,床では高さんまで鉛直にとび上が れる運動エネルギーを出せるものとする。蛙が 同じエネルギーで皿Aから鉛直にとび上がると き、以下の間に答えよ。蛙の大きさは無視する。 0(1) 蛙が皿からとび上がるときの床に対する初 速度の大きさをVとし, 皿Aが床に接近する初速度の大きさかた 19 保存則 19 保存則 59 M V M+2m リ= 正の向きを 決めるのに 運動量保存則が成り立つためには, 物体 系に外力が働かないか, 働くとしても, そ GくUターン形 x4 x の座標軸を の力が0であればよい。 考えている。 M M (2) 蛙が出したエネルギーは Mgh であり, いまは,それが全体の運動エネル いだしたし4んかし 20 ギーに使われているから Mgh = ;MV2+小(m+M+m) 1 2 A B 2 (M+2m)gh M+m のを代入してVを求めると V= (3) 蛙がとんだ後の,皿とおもりの系につ いても1次元化を利用すると,加速度を a (M+m)g M, m, およびVで表せ。 X (2) 蛙の初速度の大きさ VをM, m, h, および重力加速度gで表せ。 (3) 蛙が皿Aから離れる距離の最大値はんの何倍か。ただし, I皿と床 の衝突はないとする。 mg aとして o。 (m+ M+m)a=-mg+(M+m)g M a= (埼玉大) M+2m IAの加速度は鉛直上向きにaであり, 蛙の加速度は下向きの重力加速 度gだから,皿に対する蛙の相対加速度は,上向きを正として,-gーa と なる。一方,相対初速度は Vー(一) =DV+v であり, 最も離れたときの Level(1)~(3) ★★ 相対速度は0だから Point & Hint (1)問題を1次元に焼き直して考えてみるとよい(問題24 (1参照)。すると, 物体系に対して重力という外力が左右に働くことになるが,そ の合力は……。 0°-(V+v)? = 2(-g-a)h' h'は距離の最大値である。①, ②, ③より, V,v,aを代入してんを求め 「保存則」というタイトルが大きなヒントになっている。 ると(①を用いてひをVに直してから②を代入するとよい), h'=h よって,1倍 (3)運動方程式を用いて, 皿Aに対する蛙の運動(相対運動)を考える。 10。 ECHURE (1) 次元化すると次のような力学系と同等である。外力としての重力は丘 右とも(M+m)g と等しく。 合力は0となっている。よ って, 運動量保存則が成り 立つ。右向きを正とすると Q 蛙が皿Aから最も離れる時と,蛙が床に対して最高点に達する時では、 どちらが先に起こるか。計算ではなく、定性的に考察してみよ。(★★) (M+m)g Mg や蛙 (1)で蛙がとび上がるときAを押す力を N, 糸の張力をT, その際の時 間をAtとする。蛙,A, Bとおもりの一体,についてそれぞれ力積と運 動量の関係式を記し, 次に運動量保存則を導いてみよ。 (★) mg 滑らかな水平面 0=-mu+MV- (M+m)u

未解決 回答数: 1
物理 高校生

(3)の最高点を求める問題で、小球が高さhの点にいる時にストッパーによる非保存力が働いていると思うのですが、なぜ系全体の力学的エネルギー保存が使えるのですか?

53 17 保存則 17 保存則 曲面AB と突起Wからなる質量 Mの台が水平な床上にあり, 台の左 側は床に固定されたストッパーSに 接している。Bの近くは水平面とな っていて、そこからんだけ高い位置 にあるA点で質量 m(m<M)の小 球を静かに放した。小球は曲面を滑り降りて突起Wに弾性衝突し, 台 はSから離れ,小球は曲面を逆方向に上り始めた。 台や床の摩擦はな く、重力加速度をgとする。 A 小球 m W 台 M S B 床 X す) 000突起Wと衝突する直前の小球の速さはいくらか。 00の 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り, 最高点に達したときの台の速さはいくらか。 また、最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で, 小球を A点 度 ば 置 で静かに放す。 (4) Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 0OO Wとの衝突後,小球が達する最高点の高さはいくらか。 (東京電機大+日本大) Level (1) ★★ (2) ★ (3) ★ (4), (5) ★★ Point & Hint 2 弾性衝突は運動エネルギーが保存される衝突だが, 反発係数 e=1 で扱いた い。 13 最高点に達したとき、小球は台に対して一瞬止まる。水平方向には外力がない ので、ある保存則が成り立つ。後半はもう一つの保存則を用いる。 ただし、 物体 系に対して適用する。 4) 2つの保存則の成立。 5(3)と同様に考えるのが正攻法だが, . もっとスッキリと解ける。 x

未解決 回答数: 1