学年

教科

質問の種類

物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
物理 高校生

ローレンツ力の分野です。(3)の解説の説明の交流電圧の角周波数が円運動の角速度と等しくなっていれば〰︎とあるのですがなぜそうなるのかわからないです。教えて頂きたいです。よろしくお願い致します。

【3】 正の電気をもつ質量の荷電粒子を加速する ことを考える。いま、半径 R,厚さの中空で半円 形の電極 AとBを図のように距離だけ離し、平面 上に置いた。ただし、厚さと距離はいずれも半 径Rより十分小さいものとする。2つの電極には図 の真上から見た図に対して紙面を裏から表に貫く方 向に磁束密度の大きさ B の一様な磁場がかかって いる。2つの電極ではさまれた領域 (Cとする) には 磁場はないものとする。電極AとBの間には交流 電圧V(f)=Vcos.ℓ,f が加わっており,t=0のと 真上から見た図) C A B P Be Bo /装置の\ 断面 CB 8E き、電極Aが高電位とする。 また領域Cの電場は一様とみなせるとしよう。 ABU Q FK この装置によって荷電粒子が加速されるようすは次のとおりである。 時刻 f=0 に電極 Aの右端の点Pに荷電粒子を置くと電圧V によって加速され、 電極 B に入る。荷電粒 子が2つの電極間の距離を移動する時間は十分短く、その間電圧は一定とみなせるもの とする。電極 Bに入った荷電粒子はローレンツ力を受けて円運動を行い,領域Cに達す るが、電極内の移動時間は領域を通過する時間に比べて十分長い。したがって、この 間に交流電圧の位相が180°変化していれば荷電粒子は再び電圧V によって加速され、 電 極Aに入って円運動を行い、領域Cに達する。 このように電極 A, B内で円運動した荷 電粒子は領域Cを通過するたびに加速をくり返す。以上を考慮して次の問いに答えよ。 (1) 時刻 f=0 電極 A の右端の点P に置かれた初速度の荷電粒子が電極 B に入ると きの速度を求めよ。 (2) 電極 Bに入った荷電粒子が行う円運動と円運動の向き(時計回り、反時計 回り)を答えよ。 (3)(2)の荷電粒子が電極 B内を通過する時間および領域Cに到達した荷電粒子を再 Vで加速するために必要な交流電圧の角周波数」をそれぞれ求めよ。 (4)(3)の荷電粒子が領域Cを通過して電極Aに入るときの速度 #27 電極 A内での円運 動の半径 および電極A内を通過する時間をそれぞれ で表せ。 (5)ここまでの考察により, 荷電粒子は領域Cを通過するたびに電圧Vでどんどん加速 されるが,加速に伴って電極 A, B内での円運動の半径がどんどん増大してしまい 荷電粒子が到達できる速度の上限が電極の大きさに依存してしまう。そこで,荷電粒子 の円運動の半径を保ったまま加速するには磁束密度の大きさと交流電圧の位相をどのよ うに制御すればよいか、答えよ。

回答募集中 回答数: 0
物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0
物理 高校生

(4)のマーカーの部分が分かりません💦 糸がたるまない=遠心力が重力と張力の合力以上になる という考え方は間違っているのでしょうか??

図(a)に示すように、天井に取付たれた支点 0及び支点 0′から,質量mのおもりが軽い糸 5 で吊り下げられ, 床から高さ の位置Aで静 止している。 2本の糸のなす 角∠OAO'は90°である。 支点0とおもりを結 糸の長さは3ヶであり, 床から2つの支点まで の高さは4rである。 糸の質量, 伸び, 空気抵 抗は無視できるものとし, おもりは1つの鉛直 面内で運動するものとする。 支点の直下で床 から2mの高さの点Pには太さを無視できるくぎ が鉛直面に垂直に固定されている。 重力加速度 の大きさをgとする。 (1) 糸OAに生じている張力の大きさを求めよ。 (2) おもりの最下点Bを通過するときの速さ を求めよ。 (3) おもりの最下点Bを通過した後、「点Pを支点 として運動する。 通過直前の糸の張力の大 きさを T1, 通過直後の糸の張力の大きさ T2 を T2 とする。 その両者の比 の値を求 めよ。 おもりを糸O'Aから静かに切り離したところ, 図 1 (b)に示すようにおもりは点Oを支 点とする運動を始めた。 再び, おもりを位置Aに戻し, 初速度を与え たところ, おもりは図1(c)に示すように, 糸がたるまずに点P点の真上の点C (OC=CP =r) に到達した。 到達すると同時におもりを 糸から切り離したところ, おもりは床に落下し た。 ただし、初速度はおもりの描く軌跡に対して 接線方向に与えるものとする。 m (4) 糸がたるまずにおもりが点Cを通過するた めに必要な初速度の大きさの最小値v を 求めよ。 m 3r 図1(a) m D 3. 図1 (b) 3r KL 図1 (c) PB ----- B ぎK-2 O (5) 位置Aでおもりに 【問1】 (4)で求めたv を初速度の大きさとして与えた場合の点Cか ら落下地点D点までの水平距離Lを, m, g,の中から必要なものを用いて表わ せ。

回答募集中 回答数: 0