学年

教科

質問の種類

物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

赤線のところで、どうして−eになるのでしょうか?

天俊 運動量の変化は,その間に |vv| が受ける力積は, 秒 (記号N・s)。 り立つ。 運動 m2 V2 m2 U2 (c) 合体・分裂 物体が合体, 分裂する場合も, 運動量は保存される。 3 反発係数 (はねかえり係数) 各物体の速度を用いると, 反発係数eは. mi+m202 衝突前 m₁vi m202 向に軸をとり, 運動量 を各方向の成分に分け て、保存の式を立てる こともできる。 第Ⅰ章 力学Ⅱ |衝突前 衝突後 ①反発係数 直線上の2物体の衝突では,衝突前後の VI 02 == m [⊿t[s] 後 F mv e= v₁'-v₂' V₁-V2 | 衝突後の相対速度 反発係数 = 衝突の相対速度 4 V FA v' v' mu' mv-mv=FA ... ⑥ 面に垂直な方向vy'=-ev, ... 7 ・7 ? ●壁との垂直な衝突 反発係数eは, ○なめらかな面への斜めの衝突 面に平行な方向 Ux'=Ux e= =- ・・⑤ v v v Vx -H-- F[N]↑ 斜線部の面積 Fat に等しい ②反発係数による衝突の分類 e=1. ・・・ (完全) 弾性衝突。 力学的エネルギーは保存。 0≦e<1‥‥非弾性衝突。 力学的エネルギーは減少。 Vy e=0....... 完全非弾性衝突。 衝突した2物体は一体となる。 F ような力を撃力 (衝撃力 ときそのまとまり プロセス 次の各問に答えよ。 1 東向きに10m/sで運動する質量1500kgの自動車の運動量を求めよ。 2 西向きに運動する物体に10Nの力を40s間加えると, 物体は静止した。 物体が受け た力積を求めよ。 3 右向きに 10m/sで運動する質量 0.10kgのボールをラケットで打つと,ボールは左向

解決済み 回答数: 1
物理 高校生

解説の図aから図bへの変換の仕方が分からないので教えて頂きたいです。よろしくお願いします。

必解 78. 〈音波の性質> 図1上図のように原点Oにスピーカーを置き,一定の振幅で, 一定の振動数 fの音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上 (x>0) の各点で圧力』の時間変化を測定する。 10 スピーカー P x X3 X4 X5 Poss X7 X8 XoX1 x X6 X2 ある時刻において, x軸上 (x>0) の点P付近の空気の圧力か をxの関数として調べたところ,図1下図のグラフのようになっ た。ここで距離 OPは音波の波長よりも十分長く、 また音波が存 在しないときの大気の圧力をpo とする。圧力が最大値をとる x=x から, 次に最大値をとる x=xg までのxの区間を8等分 し, X1,X2, ..., x7 と順にx座標を定める。 (1)x1 から x までの各位置の中で、x軸の正の向きに空気が最も大きく変位している位置, 点P付近の拡大図 図 1 およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力の時間変化を調べたところ、 図2のグ p↑ ラフのようになった。 圧力が最大値をとる時刻 t = to から, 次に最大値をとる時刻 t = t までの1周期を8等分し, t, t2, ..., Poss と順に時刻を定める。 t3 t4 t5 to ti tz /totto (2)からt までの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように,原点から見て点Pより遠い側の位置に,x軸 に対して垂直に反射板を置くと,圧力が時間とともに変わらず常 にpo となる点がx軸上に等間隔に並んだ。 (3) これらの隣接する点の間隔dはいくらか。 なお, 音波の速さ をcとする。 図2 P 反射板 x

解決済み 回答数: 1