学年

教科

質問の種類

物理 高校生

物理 波 解き方わからないですお願いします

白色 先 B1のように、ガラスに多数の平行な像をつけて作った回折格子に単色光を に入射したところ、入射方向から角8の方向で回折光が強め合った。また, 図2のように、回折格子の前方にスクリーンを置くと、スクリーン上には回折光 による明が現れた。 00 の男を0とし、そこから近い順に1次元 光..., と呼ぶことにする。ただし、単位長さあたりの数をNとする。 椅子 図2 2次先 先 1 2次先 長の先での方向にm先が生じた。 このときに成り立つ 式として、正しいものを、次の①~6のうちから一つ選べ。ただし,mは または正の整数である。 Nain-mi sin ml Ncos-mi Naine (m+ (+ Ncoes-(m+ cos-mλ 5 N3.0×10本/mm としたとき、3次光が030 の方向に生じた。単色 光の波長入はいくらか。最も適当なものを、次の①~のうちから一つ選べ。 6m ---0-3.6 x 10-7 4.6 x 10~7 ③ 5.6 x 10-7 ④ 6.6 x 10- 7.6 '10-7 Jsing 6 単色光を白色光に替えると、 ではなく幅のあるスペクトル(いろいろな 色がして並んだ光の壱)になるためり合うスペクトルどうしが重なっ てしまうことがある。 白色光に含まれる光の波長入の範囲を, 3.6 x 10mm 入る 7.1x10m として実験を行ったとき、1次光, 2次元 3次光の重なり方について説明し た文として,正しいものを、次の①~5のうちから一つ選べ。7 ①1次と2次は重なるが,3次光は重ならない。 ② 1次光は重ならず 2次元と3次光は重なる。 ⓒ 1次光と光が重なり. 2次元と3次光が重なるが, 1次元と3次元 は重ならない。 1次2次元 3次光のすべてが重なる。 ⑤ いずれも重ならない。 _質1の左側の面から入射する光線を、光の三原色である青 緑 赤の色の光 に取り替えた。 これらの光線からなる1本の光線を紙面と平行に入射させたと ころ、1の右側の面から出てきた光線は色ごとに分けられていた。 ただし, 1の内部を進む光線は2との境の上下の面でそれぞれ1回ずつ反射し、 1の左側の面と右側の面は互いに平行であるものとする。 また、波長が短い 光ほど質1の屈折率が大きい。 問61の右側の面から出てきた光線の色と進む方向を表した図として最も 適当なものを、次の①~④のうちから一つ選べ。19 光ファイバーに 白色光を入れます。

回答募集中 回答数: 0
物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0
物理 高校生

有効数字で質問なんですけど2.0×150の答えってどうなりますか?掛け算の場合最も桁数の少ない数字に合わせるとあるので3桁の数字をどうしたら良いかわからなくて、お願いします!

① 測定値の計算と有効数字 日本の た。こうして得た数字の 3, 5, ゆ た意味のある数字なので、これらを 有効数字 けたすう たこの例で,「有効数字の桁数は3桁である」という。有 せいみつ 効数字の桁数の多いものほど、精密に測定したことになる。 いまこの質量357g をkg の単位で表すと 0.357kg となる。 このとき, 0.357kg くらい 0位どりの0 なので、 有効数字の桁数には数えない。 したがって, 357gも0.357kg もどちらも有効数字は3桁である。 p.280 な重 がある。 5 太陽と 測定値には必ず誤差が含まれる。 測定値どうしの計算では, 有効数字を適切に扱 10 うために,次のような点を考慮しなければならない。 ■かけ算、わり算 しゃごにゅう 桁数 (四捨五入した後) とする。 測定値どうしをかけたりわったりするときは,通常, 最も少ない有効数字の 10 約 1 電子の 約 しかし ときに の0を ■指数 15 例えば 15 :縦 26.8cm, 横 3.2cmの長方形の面積 26.8cm×3.2cm=85.76cm² 答え 86cm² 3桁 2桁 2桁 (1) であ ■足し算、引き算 五入によって測定値の末位が最も高い位のものに合わせる。 た 例:21.58cm の棒と8.6cm の棒を継ぎ足した長さ 21.58cm + 8.6cm = 30.18cm 小数第2位 小数第 ■整数や無理数の扱い 整数や無理数は測定値ではな 答え 30.2cm 小数第1位 測定値どうしを足したり引いたりするときには,通常, 計算した結果を四捨 1 20 負の 20 NJ 10 25

回答募集中 回答数: 0