学年

教科

質問の種類

物理 高校生

答えあります!!! 🟡Vac=√2vaって式?になるのが意味わからないです(>_<)(>_<)(>_<) 🟣Vaが丸つけてるところから始まったのは始点を揃えるためですか?

「力と運動 基本例題 3 相対速度 湖を東西に横切る橋を,自動車Aが東向きに 10m/s, 自動車Bが西向きに15m/sの速さで進んでいる。 p (1) Aに対するBの相対速度はどの向きに何m/sか。 ②2 この橋の下をモーターボートCが北向きに 10m/s の速さで進んだ。 Aに対するCの相対速度はどの 向きに何m/sか。 よって 西向きに25m/s =-25m/s (2) VAC は右図のよう になる。 A, Cの ① 速さは等しく, VA=Uc であるか VC ら, VACの大きさ 1 TA 8 は、直角三角形の始点をそろえる 辺の比より 題 4 VAC AI 45% 指針 一直線上の運動の場合, AとBの速度をそれぞれ UA, UB とすると, Aに対するBの相対速 度は VAB = UB-VA である。 平面上の運動の場合には, ベクトルを用いて VAB = UB-UA と なる (VAB は, UAとBの始点をそろえての終点からBの終点にベクトルをかく)。 解答 (1) 東向きを正とすると, vA=+10m/s, VB=-15m/s だから VAC=√20A VAB=UB-VA=(-15)-(+10) ¥7,8,9 解説動画 VAC 10 m/s 45% 10m/s -VA =10√2=10×1.41=14.1≒14m/s 15m/s よって 北西の向きに 14m/s [別解] VAC=Uc-VA=c+ (v^) より,ひとDA を合成して考えることもできる。 リード VC 北 西東 南 VA

回答募集中 回答数: 0
物理 高校生

このページが分からないので教えてください!

B 3あ ) E C Fcos S % 5 10 第1編 力と運動 基本例題7 壁に立てかけた棒のつりあい 質量 m, 長さ 21 の一様な棒 AB を, 水平であらい床と鉛直でなめらかな壁の間に, 水平か ら0の角をなすように立てかけた。重力加速度の大きさをgとする。 (1) 棒が静止しているとき, 壁からの垂直抗力の大きさ NA, 床からの垂直抗力の大きさ NB, 摩擦力の大きさを求めよ。 (2) 棒が倒れないためには, tan 0 がいくら以上であればよいか。 ただし,棒と床の間の静止摩擦係数をμとする。 Bのまわりの力のモーメントのつりあい, 鉛直方向と水平方向の力のつりあいを考える。 答 (1)棒にはたらく力を図示する。 Bのまわりの力の モーメントのつりあいより mg xlcos0 - NA×21sin0 = 0 mg 2 tan 0 NA=- 鉛直方向のつりあいより NB-mg=0 よって NB=mg 水平方向のつりあいより NA-F=0 Let's Try! 8. 壁に立てかけた棒のつりあい 長さ1[m]の軽い棒 AB を,水平であらい床と鉛直でなめらかな壁の間に,水平から 60°の角度をなすように立てかける。 棒のA端から離れた 点に重さ W〔N〕 のおもりをつるしたところ, 棒は静止した。 (1)棒が壁から受ける垂直抗力の大きさをNA〔N〕, 床から受け る垂直抗力の大きさをNB〔N〕, 摩擦力の大きさをF〔N〕 と する。 NA, NB, F をそれぞれ求めよ。 Na= W 3 tan ① NA=F @ 3 NB=1/3xw こ X 3 Na mg F=NA= 2 tan 0 (2) F が最大摩擦力μNB をこえ なければよいので F≤UNB = mg 2 tan tan 02 Wo w cos/60°= Nasin60°xl wcOS 600 3 Sin 60°& Mμmg 1 2μ 60° F NA とする。 NB B (2) 棒の立てかける角度を変化させたとき, 棒が倒れないためには, 角度を何度以 上にすればよいか。ただし,棒と床の間の静止摩擦係数を 1/3 2 8. (1) NA: (2) NB: F: NE Ima NA mg F- m 21 21 sine NB Icos XB →例題 7 2 重心 (1) 重心 4 点 質 100 基 1. 質量 40c' め 1. 重 £

回答募集中 回答数: 0
物理 高校生

写真の問題が分かりません。(1)の(ア)はなんとなく分かりましたが、(イ)からはどのように考えたらいいのか分かりません。よろしくお願いします。 解答過程も、ほぼ進んでいませんが載せておきます。

つぎの文中の 図1のように,重さの無視できるばね定数k[N/m] のばねに質量 m[kg]の小物体が結ばれている。小物体 の位置を示すために, ばねが自然の長さとなるときの小物体の位置を原点として、図の右向きに座標軸 x を設定する。 時刻 0s において小物体の位置はOm,すなわち原点Oに位置し, またその速さはvo [m/s]で座 標軸の負の方向に移動している。 以下では,重力加速度の大きさをg[m/s']とする。 (ア)の解答群 1 m ① 4Vk (6) π m 2Vk (イ)の解答群 ① mv² k 6 (1) はじめに,床がなめらかで小物体との間に摩擦が生じない場合を考える。 時刻t > 0において, 小物体 の速度が最初に0m/sとなる時刻は (イ) [m] である。 m 2k -Vo (2) にあてはまるものを解答群の中から選びなさい。 (2) 77 1k 2 Vm k m km k Imm -Vo 2Vk -VO (3 8 m F k 図 1 3π [s], そのときの小物体の位置は m 2 V k m 速さ vo N 1 k 2Vm m 小物体・ -Vo 4 1 9 2Vm mk m 2k ・Vo -Vo ⑤⑤ (5) 10 π 4 ← m 2k k m -vo m ·Vo² (2) つぎに、床がなめらかではなく、床と小物体との間の静止摩擦係数がμs, 動摩擦係数がμa の場合を 考える。 時刻 t0 において, 小物体の速度が最初に0m/sとなる時刻を [s] とする。 時刻における小物 体の位置 x] [m] は | (ウ) である。 また、この位置に静止せず再び座標軸の正の向きへ運動を開始するた めの, vo に関する条件は, (エ) である。 速さ voが (エ) | の条件を満たしていると仮定し, 2回目に速度が0m/sとなる時刻を [s] とする。 時 刻から時刻までの間において, 小物体の速さが最大になるのは, 小物体の位置が(オ) [m]のとき (カ)である。 である。また、時刻たにおける小物体の位置 x2 [m]を,x] を用いて表わすと,x2=

回答募集中 回答数: 0