学年

教科

質問の種類

物理 高校生

画像の問題の答えを教えてください!!

底面積がS[m²), 高さがL(m)の中空の円柱容器に物質を入れて水に浮かべ、浮力の 実験を行った。 以下, 円柱容器に入れた物質も含めて円柱とよぶ。 円柱の運動は鉛直方 向に限られるものとする。 水の密度は深さによらず一定で、円柱の運動にともなう水か らの抵抗, 水面の変化および円柱容器自身の質量は無視する。 ここで水の密度を Po [kg/m3], 重力加速度の大きさをg[m/s2] として次の問いに答えよ。 水面 d Po 図 1 S Po 図2 Po P1 図3 (1) 円柱の下部に密度が1〔kg/m²(ただし, Pipo) の物質を高さ L [m] だけ入れて 水に浮かべると、 図1のように長さ d [m] だけ水面上に出て静止した。 このとき円柱 が受ける重力の大きさはア [N] である。 水中の物体は,その物体が押しのけた体 積の水が受ける重力の大きさに等しい浮力を鉛直上向きに受けるので、円柱が受ける 浮力の大きさはイ [N] となる。 イに入る適切な文字式を下の解答群の中から1つ選べ。 ③SLg ア ア :posLg ②poLig イ :D PSLg ② pSL-dg 3 PS(L-L₁)g PiSL₁g ④ poS(L-L-dg+pSLng (2) (1)における長さ d [m] を求めよ。 (3) 円柱が静止した状態で、 図2に示すように上から力を加え, 長さ x[m] だけ沈め た。 ただし, xはdに比べて十分小さいとする。 このとき円柱が受ける重力と浮力の 力の大きさ F [N] を求めよ。 (4) 円柱の残りの空間を密度が2〔kg/m3] (ただし, P1 P2) の物質で完全に満たして水 に入れた。 このとき, 図3のように円柱の上面が水面とちょうど同じ位置になって静 止したとする。 物質の密度 P2 [kg/m3] を求めよ。

回答募集中 回答数: 0
物理 高校生

高校物理 75番の(3)と79番鉛筆で波線引っ張った部分の解説がわかりません。教えて欲しいです。

54 第1章 物体の運動とエネルギー 75 仕事率 重力加速度の大きさを 9.8m/sとして、次の仕事をそれぞれ求める (1) クレーン車が質量 2.0×102kgの物体を,一定の速さで35秒間に10m持ち上げ たときの仕事率 2) 自動車が1.5×10°Nの推進力で,一定の速さ 18m/s で走行したときの仕事率 773) 50kgの人が,1.0 分間に高さ12mの階段を一定の速度で上がったときの仕事 ヒント (3)この人は自分にはたらく重力に逆らって12m移動する。宝一高 ➡1 9102 運動エネルギーと仕事 図のように,斜面上に質量 76 3.0kg の台車を置き, 速さ2.0m/sですべらせたところ, ある時間が経過した後に, 台車の速さが6.0m/sになった。 この間に,台車にはたらく合力がした仕事はいくらか。 ➡2 77 ヒント 台車の運動エネルギーの変化) = (台車がされた仕事 ) 9/10 2.0m/s さ6.0m/s 18 ●運動エネルギーと仕事 質量 2.0×10-2kgの小球が, 厚さ 3.0kg # ST 2\m0.0.10m 0.10mの鉛直に固定された木材に,速さ 3.0×102m/s で水平に打ち こまれ、木材を貫通した直後に 1.0×10m/sの速さになった。 木材 の中を進む間, 小球は木材から一定の大きさの抵抗力を, 運動の向き と逆向きに受けるとする。 また, 重力の影響は無視できるものとする。 (1) 小球が木材を貫通するまでに、木材の抵抗力が小球にした仕事はいくらか。 T(2) 木材の抵抗力の大きさはいくらか。 OS ヒント (1) (小球の運動エネルギーの変化)=(小球がされた仕事 ) 223 ・木材 ➡2 NET 78重力による位置エネルギー 崖から10m上の塔の屋上には 質量 2.0kgの物体Aがあり, 崖から15m下の水面には質量面 4.0kgの物体Bが浮かんでいる。 重力加速度の大きさを 9.8m/s20 とする。 AQ 塔 10m 崖 (1) 水面を基準にとるとき, A,Bの重力による位置エネルギーは それぞれいくらか。 15m B (2) 崖を基準にとるとき, A, B の重力による位置エネルギーはそ れぞれいくらか。 -2 水面 79弾性力による位置エネルギー 図のように, 一端を壁 ヒント 重力による位置エネルギーは,基準のとりかたによって正にも負にもなる。 駐車 車 に固定したばね定数 3.0 × 102N/m の軽いばねの他端に物体 をつけて,この物体を水平方向に手で引く。 00000000 (1) ばねを自然の長さから10cm伸ばすとき, 物体がもつ弾性力による位置エネル ギーはいくらになるか。 また,このときに手が加えた力がした仕事はいくらか。 2)このばねをさらに10cm伸ばすとき、物体がもつ弾性力による位置エネルギーは いくらになるか。 また、このときに手が加えた力がした仕事はいくらか。 ➡2 ヒント 弾性力による位置エネルギーは, 弾性力に逆らって加えた力のした仕事に等しい。

回答募集中 回答数: 0
物理 高校生

大問6の問4、問5の式がどうしても わかりません。 教えていただけますか。 答えも添付します。

6 図のように,鉛直方向上向きを正としてx軸をとり、原点Oには小球Aが,位置座標 x=x には小球Bがある。 時刻 t=0に小球Aを鉛直上向きに初速度v で打ち上げると 同時に,小球Bを静かに放した。 重力加速度の大きさをgとし,以下の各問に答えなさ い。 但し, 空気抵抗は無視できるものとし、速度、加速度は鉛直方向上向きを正とする。 0-16- X Vo V-V-gt O-Vogl 20 Vo =16 x+ B Vo A 【 配点: 24点】 Vist V=Votat V=Vo-ft (1) 時刻 t = 0 から小球 A, B が衝突するまでの間において, 時刻 t における以下の問 ① ~ ④ に答えなさい。 解答は X01 Vo,g, t のうち必要なものを用いて表しなさい。 ① 小球Aの速度を求めなさい。 (2) 小球Bの速度を求めなさい。 (3) 小球 A の位置座標を求めなさい。 ④ 小球Bの位置座標を求めなさい。 Vot (2) 小球Aと小球Bが衝突する時刻を求めなさい。 Y = ±gt² lo-1xgx V² t (3) 小球 A, B が衝突する位置座標xx>0であるための, A の初速度が満たすべき 条件をxo, vo,g を用いて表しなさい。 2 2 Votentio Votyge (4) 打ち上げられた小球 A の速度が0になった瞬間に,小球Bとの衝突が起きたとする。 ① 小球 A の初速度vo を Xorg を用いて表しなさい。 ② 衝突した位置の座標をx のみを用いて表しなさい。 V=Vogt- •VOXP Vox V-Vrat V-V-st = Vo-gt t O-Votat at=vo -8- Xyz M² 0-16 at Vo² 26-10-26 2V₂-

未解決 回答数: 1
物理 高校生

大問6の問4、問5の式がどうしても わかりません。 教えていただけますか。 答えも添付します。

6 図のように,鉛直方向上向きを正としてx軸をとり、原点Oには小球Aが,位置座標 x=x には小球Bがある。 時刻 t=0に小球Aを鉛直上向きに初速度v で打ち上げると 同時に,小球Bを静かに放した。 重力加速度の大きさをgとし,以下の各問に答えなさ い。 但し, 空気抵抗は無視できるものとし、速度、加速度は鉛直方向上向きを正とする。 0-16- X Vo V-V-gt O-Vogl 20 Vo =16 x+ B Vo A 【 配点: 24点】 Vist V=Votat V=Vo-ft (1) 時刻 t = 0 から小球 A, B が衝突するまでの間において, 時刻 t における以下の問 ① ~ ④ に答えなさい。 解答は X01 Vo,g, t のうち必要なものを用いて表しなさい。 ① 小球Aの速度を求めなさい。 (2) 小球Bの速度を求めなさい。 (3) 小球 A の位置座標を求めなさい。 ④ 小球Bの位置座標を求めなさい。 Vot (2) 小球Aと小球Bが衝突する時刻を求めなさい。 Y = ±gt² lo-1xgx V² t (3) 小球 A, B が衝突する位置座標xx>0であるための, A の初速度が満たすべき 条件をxo, vo,g を用いて表しなさい。 2 2 Votentio Votyge (4) 打ち上げられた小球 A の速度が0になった瞬間に,小球Bとの衝突が起きたとする。 ① 小球 A の初速度vo を Xorg を用いて表しなさい。 ② 衝突した位置の座標をx のみを用いて表しなさい。 V=Vogt- •VOXP Vox V-Vrat V-V-st = Vo-gt t O-Votat at=vo -8- Xyz M² 0-16 at Vo² 26-10-26 2V₂-

回答募集中 回答数: 0
物理 高校生

物理の作図での疑問です! この問題はおもりを皿に乗せているので垂直抗力も考えると思ったのですが、回答を見ると考慮してませんでした!なぜ考えないのでしょうか、、?

必修 基礎問 7 運動方程式 I 図1のように, 水平な台の上に質量 M の 木片を置き, 台の端に取り付けた滑車を通 して, 伸び縮みしない軽いひもで皿と結び, 皿の上に質量mのおもりをのせる。 重力 加速度の大きさをgとして, 以下の問いに 答えよ。 ただし, 滑車はなめらかに回転し、 滑車と皿の質量は無視できるものとする。 木片 I. 木片と台の間に摩擦がない場合の運動を考えよう。 (1) 木片の加速度の大きさを求めよ。 (2) ひもの張力の大きさを求めよ。 Ⅱ. 実際には, 木片と台の間には摩擦がある。 静止摩擦係数μと動摩擦係数μ'を求める ため, おもりの質量m をいろいろと変え て木片の運動を調べ, 次の結果を得た。 (a) m≦m では, 木片は運動しなかった。 (b)m>m では, 木片は等加速度運動を した。 (c)と加速度の大きさαの関係をグラ フにすると, 図2のようになった。 (3) 木片と台の間の静止摩擦係数μ を求めよ。 木片の加速度の大きさ az 着眼点 座標軸は、加速度の方向とそれに垂直な方向にとるとよい。 物理基礎 ■ Point 6 運動を分解して 「静止または等速度運動 力のつりあいの式 加速度運動 運動方程式 おもり 図 1 ●動摩擦力 固定面上の物体では, 運動の向きと逆向きに働く。 その大きさF は,F=μ'N (μ'動摩擦係数, N: 垂直抗力の大きさ) ●着眼点 1.定滑車を介して糸でつながれた物体 の加速度の大きさは等しい。 (右図 4 は微 小時間 4t における物体の変位の大きさ。) 1F)を加えて 木 2. 軽い (質量を無視できる) 糸の張力の大きさ はすべての部分で等しい。 Ax | Ax=a (At) = 解説 I. (1), (2) 木片とおもりの加速度の大きさをαとし, ひもの張力の 大きさをTとすると, 木片とおもりの運動方程式は, 木片: Ma=T おもり:ma=mg-T ......① a A ② (大阪) N T m Mmg_ 0 m₁ m2 m M+m おもりの質量 図2 Mg T mg a (4)m=mz(>mi) のとき, 木片の加速度の大きさはα2 だった。 木片と 台の間の動摩擦係数μ' を求めよ。 ale (センター試験改) ●運動の第2法則 物体の加速度は物体に働く合力に比 例し、物体の質量m に反比例する。 運動方程式: ma = (=F+F2..., F, F, ・・・: 物体に働く力) 運動方程式の立て方 (i) 着目物体を決め、 働く力をすべてかく。 (ii) 直交座標を決めて、各方向での運動を知る (運動を分解する)。 (各座標軸について, 運動の法則を適用する。 ①,②式より,a=M+mg, T= II. (3)m=m のとき, 木片とおもりは動き 出す直前である。 よって, 木片に働く垂直抗 力の大きさをNとすると, 木片には最大摩擦 力μNが働き, 静止している。 ひもの張力の 大きさを T1 とすると, 力のつりあいより [N=Mg 木片: |Ti=UN おもり: Ti = mig ③~⑤式より, μMg=mg ......③ ......④ ....... 5 mi よって、 μ= M Sinto (4) ひもの張力の大きさを T2 とすると, 木片とおもりの運動方程式は, 木片: Maz=T2-μ'Mg .......⑥ おもり: m2d2=m2g-T2 ......⑦ m2g-(M+m2)a2 ⑥ ⑦ 式より (M+m2) a2=m2g-μ'Mg よって、μ'= Mg m (1) g (2) M+m Mmg_ M+m mi (3)μ M (4) μ' m2g-(M+m2)az Mg 18 2. 運動の法則 19

未解決 回答数: 0