学年

教科

質問の種類

物理 高校生

P-xグラフをy-xグラフに変換する時の方法を教えて欲しいです。 (1)から全てわからないです。 特に(3)のt6がダメな理由も特に教えて欲しいです おねがいします!

p-x 図について (例5)図1(上)のように原点Oにスピーカーを置き、一定の振幅 で、一定の振動数fの音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて、x軸上 の各点での圧力』の時間変化を測定する。 ある時刻において、x軸上の点P 付近の空気の圧力をxの関数と して調べたところ、図1 (下) のようになった。 ここで音波が存在し ないときの大気の圧力をpo とする。 圧力が最大値をとる x = x か ら、次の最大値をとる x = x, までを 8等分し、 X,, X2,...X, と順に定め る。 (1) x, ~ X の中で、x軸の正の向きに空気が最も大きく変位している 位置はどこか。 (2) x, ~ X の中で、x軸の正の向きに空気が最も速く動いている位置 はどこか。 (3) の中で、x軸の正の向きに空気が最も大きく変位している時 刻はいつか。 ス 低圧、疎 →x ⁰ スピーカー (1) x6 (2) x8 (3) t2.4/1 Þ Poss xox1 X2 次に、点P で空気の圧力 』 の時間変化を調べたところ、図2のグラフになった。 圧力 p が最大値をとる t=tから、次の最大値をとる t = tg までを8等分し、有った・・・ちと順に定める。 ansfor 点P付近の拡大図 図 1 The day aft ts ta ts poss to titz 図2

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
物理 高校生

問10の振動の中心が下にずれるのは何からわかりますか?

36 単振動 ③ 図のように、 エレベーターの天井にばね定数kの軽いばねの一端 を固定し、 他端に質量mの物体を取り付けた。 ばねの長さが自然長 のときの物体の位置を原点Oとし, 鉛直下向きに軸をとり、 エレ ベーター内の人から見た立場で, 物体の運動について考える。 重力 加速度の大きさをg とする。 〈福岡大・改〉 エレベーターが静止している場合について考える。 問1 ばねが自然長となる位置まで物体を持ち上げて静かにはなす と、物体は静かに振動した。 振動の中心での物体の位置zとして正しいものを、 次の ①~④のうちから一つ選べ。 zo= ① mgk ② 3 2 の解答群 ① mgk mg k 問2 物体の位置がのとき, 物体にはたらく力をk, To, πで表したものとして正しい ものを、次の①~④のうちから一つ選べ。 ①k (x+エ) 2 -k(x+xo) 3k(x-xo) 4-k(x-xo) 問3 問2のつねに振動の中心に向かう力を何というか。 正しいものを次の①~④のう ちから一つ選べ。 ① 慣性力 ②垂直抗力 ③復元力 ④ 重力 m(g-a) k 問4 このときの振動の周期は1, 振幅は 2 である。それぞれの答として正 しいものを、 次の解答群のなかから一つ選べ。 の解答群 02x√mk ② 2π√ ②mg ma=- 2mg k 3 t₁ = と書けるから, 小物体の運動は, [④ k ③2π√ m 2mg k 2π 1 Im @ = π√ k 2 次に、エレベーターが鉛直上向きの一定の加速度で上昇している場合について考える。 この加速度の大きさをaとする。 問5 ばねが自然長となる位置まで物体を持ち上げて静かにはなすと, 物体は力のつり あいの位置を中心として鉛直方向に単振動した。 振動の中心での物体の位置とし て正しいものを、次の①~④のうちから一つ選べ。 = m(g+a) ① ② 2m(g+a) 3 k mg F=-kx+u'mg=-k(x-μ'mg) 小物体の加速度をaとすると, 小物体の運動方程式は, m 4 kx=μmg よって, In=y k 問2 小物体が座標xのとき, 小物体には水平方向にばねの弾性力と動摩擦力がはたら いているから, -kx Mo -k(エードm2) よって,a=-; k (x-μ'mg) m k _mgを中心とした角振動数 69 = I= k k mg 1 k 4 2Vm mg ~000000000000 の単振動 となる。 よって, 小物体を静かに放してから次に速度が0になるまでの時間は単振 動の周期の半分になるから, 36 問1 ② 問2④ 問3 [③] 問4 1:②2:② 問5 ② 問6 [④] 問7 ② 問8③ 問9② 問10 ⑦ より, To=22 □ k m(g+a) 解説 問1 物体が位置にあるとき物体には重力 mg, ばねの弾性力 kx がはたらく。 加速度をα とすると, 運動方程式は, ma=-kr+mg より, x+g=-- ・・・・・・(i) 振動の中心では加速度 α が0となることから,物体はx=mgを中心 mg ......(ii) とする単振動をする。よって、 am pimg 0+ | Point 振動の中心(力のつりあいの位置) では、物体の加速度は0. 速度は最大。 問2 (ii)式より mg=kx であるから, 位置xのとき物体にはたらく力は, f=-kx+mg=-kx+kro=-k(x-xo) 問3 復元力。 物体に, 力のつりあいの位置からの変位 (x-x。) に比例した力がつねに 中心方向にはたらくとき, 物体は単振動をする。 問4 このときの角振動数を400, 周期をTとし, (i) 式を単振動の式 a=-2(x-xo) と比べて Wo=₁ Vm mg 第1章 力学 問6 物体の位置がxのとき, 物体の加速度をm, k, x, x1 を用いて表したものとして 正しいものを、次の①~④のうちから一つ選べ。 =(x+x₁) ③ -(x-x₁) @ -(x-x₁) [① =(x+x₁) ② kl m [① 問7 この単振動の角振動数として正しいものを、 次の①~④のうちから一つ選べ。 V k ② k V m m ③ /2k Vm 問8 エレベーターが静止している場合と比較すると, 周期は何倍になっているか。 正 しいものを次の①~④のうちから一つ選べ。 倍 01/0 31 42 問9 振幅として正しいものを、次の①~④のうちから一つ選べ。 m(g-a) m(g+a) 2m(g+a) ③ 4 k k 問10 振動の中心は, エレベーターが静止して いる場合と比べて距離 アだけ に ずれている。アとイに入れる式と 語の組合せとして正しいものを、 次の①~⑧ のうちから一つ選べ。 a₁=- m k ④2m A₁=n=" ......(iii) ① ② 問10問1 問5の結果より, X1 Xo = 3 4 ⑤ (6) 1) 8 _m(g+a)_me="k ma k m(g+a) ア mak ma 2k より、 α= = 1/² {x_m(g+a)} となるから、物体はx=m(g+α) (=z) を中心とする単振動 をする。 問6 ()式で! mota) として, k( (x-x₁)(iv) 772 問7 振動の中心を原点とするX軸をとると,X=ェーエ」 となり, (iv)式は, k 自然長の位置 (x=0) が振動の端点になる。 ma k k ma mak また, 物体を自然長の位置から静かにはなすと, 自然長の位置 (x=0) が振動の端点 になり, 振幅 A, は, Aozo- mg k ma 2k (i)式はαo=(x-xa) と書ける。 振動の中心を原点としてX軸をとる m と表せるから 単振動の式 α = ² X と比べると, 角振動数 (1) は, k an √ m 問8 このときの周期をTとすると, T=2x=2x、m=To ma k k ma と、X=ェェ。 と表され, X=0 を中心とする単振動の式はαo=wX となる。 問5 エレベーターの中で観測する人から見ると, 物体には慣性力 maがx軸正の向き (鉛直下向き) に見かけ上はたらく。 物体の 加速度をαとして運動方程式は, 1a ma=-kr+mg+ma @0₁ であるから1倍である。 問9 自然 (z=0) の位置から静かに放しているから, 振幅 A, は, m(g+a) k よって、振動の中心は距離だけ下にずれている。 イ 上 上 44 6000000000 下 下 Ima エ 下 下 8 37 問1 ③ 問2 ② 問6① 問7④ 問3② 問 4 ④ 問5② 問8 [③] 問9① 問10 ④ 解説 問1 おもりがx=0 (振動の中心) より左にあっても右にあっても, x=0 に向 第1章力学

回答募集中 回答数: 0