学年

教科

質問の種類

物理 高校生

2-5までの問題を教えて頂きたいです。問題量が多く申し訳ありません🙇‍♀️

35 着目物体の選び方 ② 次の文を読んで . | に適した式をそれぞれ記せ。 質量がMの台車1とM2の台車2がある。 台車1は水平な床の上に置かれてなめらかに 動き、その水平な上面ABの上に質量mの 箱がのっている。 箱とAB面の間には摩擦力 (静止摩擦係数μ)がはたらく。 箱と台車2は, 図に示されたように,なめらかに回転する滑 車Eを通じて一定の長さの糸で連結されてい る。 台車2は,台車1の鉛直な壁面BCに接してなめらかに動く。 滑車と糸の質量は無 視してよいものとする。 台車1の鉛直な壁面 AD を押す水平方向の一定な力をFとし, 重力加速度の大きさ する 一定な力 F A D 箱 TTL 台車1 M₁ B E M2 台車2 を C S (1) 最初に F=0 で, 台車 1, 台車 2. 箱がともに静止した状態を考える。 このとき箱に はたらいている力は、鉛直方向の重力と, AB面に垂直な方向の抗力(イ)糸の張 力, AB面に沿った左向きの摩擦力 (ロ) である。 また. 箱が滑りださないための 条件式は, で与えられる。 (2)次に力FをAD面にはたらかせて, 台車1 を一定の加速度で走らせたところ, 台 車2と箱はともに, 台車1に対して静止した状態を保ち続けた。 このときの台車1の 加速度は である。 また, 箱にはたらいている力は,重力と、張力 T= (ホ). 垂直抗力 R, 摩擦力 S= () である。 ここで摩擦力Sは, 左向きを正とする。 一方, 台車1と台車2の間には, 水平方向のカナ= (ト) がはたらいている。 (3) 設問(2)において, 台車1の水平方向の加速度α と, 台車1が床から受ける鉛直方向 の抗力Hとを質量M, および種々の力 F. T. R. S.fを用いて表すと, a= H=(リ) となる。 (4) 設問(2)の運動は.力Fがある値 (ヌ) 以下の場合に可能であるが,この値をこえる 場合には、箱は AB面上に静止することができず, AB面上をすべる。 (5) 箱とAB面上の間に摩擦がない場合でも,適当な大きさの力F=ル |をはたらか せると,設問 (2)と同様の運動 (すなわち, 台車2と箱がともに台車1に対して静止し た状態を保つ運動) が可能である。 〈京都大〉 第1編 力学

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
物理 高校生

(3)で、 ・波面でどのように定常波ができるのか ・なぜ節線は定常波の節を通ることになるのか ・なぜABの中央が腹になるのか 詳しく説明していただきたいです。

基本例題46 波の干渉 物理 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 水面上の 6.0cmはなれた2点A,Bから,同位相で 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 イ 2つの波が弱めあう点を連ねた線 (節線)をすべ て図中に描け。 また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) APとBP の距離の差が, 半波長の偶数倍で あれば強めあい, 奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, (2) 点Pはどのような振動状態にあるか。 AP=8.0 cm, BP=5.0cm とする。 節線が線分 AB と交わる点は, Aから測ってそれぞれ何cmのところか。 山と谷が重な る点を連ねた 線であり,図 P. 1 14.波の性質 171 基本問題 348, 349 のようになる。節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍)である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, ⅡI の中を伝わる波の速さは、それぞれ2v, vである。 面AB Q Point A. Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I 基本問題 351 B C

回答募集中 回答数: 0
物理 高校生

物理の問題です。(1)から(3)が分からないので教えて欲しいです。 至急でお願いします。

5.x軸方向の正の向きに進む波があり, 時刻t [s] における位置x 〔m〕 の変位y [m〕 は, y=0.5sin (10nt -x)….① のような正弦曲線で表される。 このとき, 次の(1)~(3) について, それぞれあとのように解い た。 (1)~(4) の( )に適当な式や数値, 語句を答えなさい。 解答番号 51~60 (1) 「この波の振幅,周期, 波長を求めよ。」 〔解き方〕 この波の振幅をA [m], 周期をT 〔s〕, 波長を入 〔m〕 とすると, 時刻 t〔s] における位 t x 置x [m]の変位y [m] は, y=Asin2™ ( ・・・②と表すことができる。 ① 式を②式にそろえ T 入 るために, ①式の ( 10ヶt-πx) の部分を2ヶでくくって, y=0.5sin2 〔( 51 ) - ( 52 )〕… ③のように変形した式を考える。 ③ 式より, 振幅Aは,A = (53) [m]となる。 また, 周期T x t は、 入 T 51 より,T= ( 54 [s], 波長は, (2) 「この波の振動数を求めよ。 」 〔解き方〕振動数f [Hz] と周期T [s] には,f= ( 56 ) の関係があるので,これより, f = ( 57 ) [Hz] である。 「この波の速さを求めよ。 」 〔解き方〕 波の速さをv 〔m/s] とすると, v, f, xの間には,v= ( 58 ) の関係がある。 これより, v= ( 59 ) [m/s] である。 (3) = 52 より 入 = ( 55 ) [m]となる。

回答募集中 回答数: 0