学年

教科

質問の種類

物理 高校生

オがわかりません. キ,クに関しては,Q1, Q2がr内に全て含まれているため理解しやすいですが,オはなぜQ2の方を無視して良いかがわかりません.コンデンサーの極板の時と同様に,電場は(1/2)としてはいけないですか? また,もし Q1が負電荷,Q2が正電荷 Q1が... 続きを読む

(A) 点Oに[C] の正の点電荷があり,さらに点を中心とした半 径α[m]の球面上にQ2〔C〕の正電荷が一様に分布している系を考 える (図3)。 点0から [m]の距離にある点Pの電界の強さE [V/m〕 は、点Oを中心とした半径r[m]の球面を通過する電気力 線の総本数Nから求めることができる。 すなわち, r<a のとき N = オとなるので,E=カであり, r>a のとき N= キとなるので,E=クである。 (B) 真空中に置かれた平行平板コンデンサーを考える。 Q [C] の正電 荷が一様に分布する極板を囲む直方体状の閉曲面A (図4)を通過す る電気力線の総本数Nは,Qを用いて表すと, ガウスの法則により 図2 TE ~閉曲面 (球面) 電荷Q2 [C] が球面の表面のみに 一様に分布している 図3 (A) オr<a の場合に, 点Oを中心とする半径rの球面の内部に存在す る電荷はQ1のみであるので,この球面を貫く電気力線の総本数Nは N=4rkQ₁ カオで考えた球面を貫く電気力線の総本数Nは, Eを用いて N=Ex4xr² とも表される. これがオで求めた値と等しいこと (ガウスの法則) より 4mkQ=Ex4mr² キ ra の場合に、点Oを中心とする半径rの球面の内部に存在する電 荷はQ+Q2 であるので, この球面を貫く電気力線の総本数Nは N=4wk (Q1+Qz) クキで考えた球面を貫く電気力線の総本数Nは, Eを用いて N=Ex4tr² M E=kQ₁ k p² とも表される。これがキで求めた値と等しいこと (ガウスの法則)より 4mk(Qi+Q2)=Ex4xr² :: E=kQ¹+Q₂ 7²

回答募集中 回答数: 0
物理 高校生

(1)は非保存力がした仕事=力学的エネルギーの変化のように考えたのですが、 (2)の問題との違いはなんですか?? (2)でも 力学的エネルギーの変化量だから =非保存力のした仕事よって(1)と答えが同じになりますか? 課題なので答えわからないです、 教えて欲しいです

(4) 下端0に到達したときの物体Aの速さ (m/s) を求めよ。 e 速さをもっている。運 問題3 〈千葉工業大: 偏差値 40.0~50.0> ばね定数k (N/m) の軽いばねの一端に. 質 量(kg) のおもりAをつけたばね振り子が ある。 このばね振り子をあらく水平な床面上 をもっている。 運Eの化 すべてのカした VAIO V₂=0 @2 immmm Q310 51P -31 に置き. ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のようにAを原点Oから点P(x = 5/(m)) まで引っ張って 静か にはなした。 Aは左向きに運動し始め, 点Oを通過した。 その後, x=-3ℓ (m) の点Qで静止した。 床面とAとの間の動摩擦係数を」とし、重力加速度 の大きさをg(m/s2) とする。 (I) Aが点PからQまで運動する間に、動摩擦力のする仕事 W(N・m) を求 めよ。 (2) Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E(J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 193 is ($4-95². 123 -8K5² (3) — 8k)² = ll_mg t HF K-251² == mg 200 Cop of = サ +K(95²-251²) t

解決済み 回答数: 1
物理 高校生

⑴なのですが、距離が5mとして計算されている理由が分かりません。OQ+QP+PQが距離だと思ってしまいます... 教えてください。質問の意味が分かりにくかったら言ってください💦

発展例題2 等加速度直線運動 斜面上の点Oから, 初速度 6.0m/sでボールを斜面に沿 ONE 指針 時間t が与えられていないので、 「v²-v2=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには、速度と時間との関係を式で表す。 解説 (1) 点 0, Qにおける速度, OQ 間 の変位の値を 「v²-v2=2ax」 に代入する。 (−4.0)²-6.02=2×a×5.0 a=-2.0m/s2 って上向きに投げた。 ボールは点Pまで上昇したのち、下 降し始めて, 点0から5.0mはなれた点Qを速さ 4.0m/s 速さ 4.0m/s で斜面下向きに通過し, 点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 LOSUHO SAY^82A (2) ボールを投げてから, 点Pに達するのは何s後か。 また、OP間の距離は何mか。 (3) ボールの速度と, 投げてからの時間との関係を表す グラフを描け。 (S) (4) ボールを投げてから, 点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 v[m/s〕↑ J16.0 0 SUTA - 4.0 - 6.0 085.0m 発展問題 24, 25,26 1 23 P TUTS MU 60m/s. 550GS OP間の距離 KOBRAJ PQ間の距離 4 25 6t[s]

解決済み 回答数: 1