学年

教科

質問の種類

物理 高校生

⑶ 時間を求めるために、周期を使うことなんて思いつきません。答えを見ても、イマイチ理解できてないです。 他に解き方ってないんですか?💦

必解 52. 2本のばねによる単振動〉 A B mmm mmm 0 図のように, なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A, B とばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。 単振動は等速円運動のx軸上への正 射影の運動であるといえる。 時刻 t=0 において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして. 次の問いに答えよ。 (1) 時刻 t における物体Pの位置xおよび速度vを,等速円運動の角速度 を用いて表せ。 (2)時刻 t において物体Pが位置xにあるときの加速度αを, wとxを用いて表せ。また,2 つのばねAとBから受ける力Fを, kとx を用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点0を通過するまでの時間 to と, 初めて x=123 を通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, ω やTを用いないこと (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。 このとき座標軸との交点を, a, kおよびm を用いて表せ。 また, 物 体Pが時間とともに図上をたどる向きを矢印で表せ。 [ 香川大改〕

未解決 回答数: 1
物理 高校生

mをどうやって求めているのか全くわかりません💦 教えてくださいお願いします🙇

339クインケ管による実験 図のような, 入り 口Sから音を入れ, 左右2つの経路 (SAT と SBT) を通った音を干渉させ、出口Tでその干渉音を聞く 装置がある。 はじめ, 左右の経路の長さは等しく ができる。 S A) B なっている。 この状態からBをゆっくり引き出して出音 いったところ,Tで聞く音が次第に小さくなり T 0.17m 引き出したところではじめて最小となった。 音の速さを3.4×102m/s とする。 (1) 音の波長と振動数はいくらか。 (2)定性 音の振動数はそのままで室温を上げて同様の実験をすると, 音がはじめて 最小になるまでにBを引き出す距離は, 長くなる・短くなる・変わらないのどれか。 ヒント (1) Bl〔m〕 だけ引き出す ⇒ 経路差は21〔m〕 (2) 音の速さが大きくなる。 1,2 6.4×10 Hz 340 音の干渉図のように, スピーカー A, B から同じ振動数の音を出す。 A, B から等距離にあ る点0で音の強さは極大であり,点から直線AB に平行に移動すると,音の強さは次第に小さくなっ てから大きくなり, 点Pで再び極大になった。 「聞く T CA 2.5m OS-01X04.8 2.5m P 2.5 -12.0 m- B (1) スピーカー A, B が出す音は, 同位相か逆位相か。 BC ISOXONE (08-)-01x04.E (2) スピーカーが発する音の波長はいくらか。 aa 6.8×10 Hz ➡2 ヒント (2)点Pで音の強さが極大となるので,|AP-BP|は波長の整数倍である。

解決済み 回答数: 1
物理 高校生

答えと解き方を教えてください🙇

STEP 1 公式チェック □U1-1 【等速直線運動】 軸上を一定の速度 [m/s] で動く物体が、 時刻 0s に位置x=2〔m) を通過した。この物体の時刻 [s] での位置ェ 〔m〕は? I= 学習時間 do-vt □U1-2 【等速直線運動のグラフ] r〔m〕 tグラフの傾きは 【 1 】 を表す。 また, b-tグラフで囲まれた面積は 【②】 を表す。 傾きは v[m/s] 面積は Do ① Io =rotot 速度 0 0 t(s) t(s) ② 動 □U1-3 【等加速度直線運動】 時刻 0sに原点Oを初速度vo [m/s] で出発して, 一定の加速度α [m/s] でx軸上を運動する物体がある。 物体の時刻 t [s] での速度 v= x= [m/s] は? 物体の時刻t [s] での位置〔m〕は? これら2式からt を消去した式は? □U1-4 【等加速度直線運動のグラフ】 za's x-tグラフの傾きはその瞬間の 【③】 を表す。 x=vot+ at x [m] b-tグラフの傾きは 【④】 を表 し, v-tグラフで囲まれた面積は 【⑤】 を表す。 v[m/s] v=vo+at 傾きは は 2 v²-vo²= ③ ④ 加速度 分 傾きは Vo O t[s]) t t[s] ⑤ 移動距離 □U1-5 【相対速度】 直線上を速度vAで運動する物体Aと速度UB で運動する物体Bがあ る。 Aから見たBの速度 (相対速度) VAB は? VAB = □U1-6 【自由落下】 初速度0m/sで落下する (自由落下する) 小球がある。重力 O+ 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を原 49 点として鉛直下向きにy軸をとる。 自由落下を始めてかYO ら時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕 は? v= ¥0 y= y〔m〕 □U1-7 【鉛直投げ上げ】 小球を鉛直上向きに初速度vo [m/s] で投げ上げた。 重力 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を 原点として鉛直上向きにy軸をとる。 投げ上げてから 時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕は? これら2式からtを消去した式は? y〔m〕 yo 0= AVO y= O+ 147

解決済み 回答数: 1