学年

教科

質問の種類

物理 高校生

解き方がわからないので教えていただきたいです! 至急お願いしたいです🙏

1.17気体の状態変化と熱効率 ② [2017 千葉大 ] 次の文章を読み, 問題文中に定義された 記号を用いて次の問いに答えよ。 体積↑ 容器に閉じこめたn [mol] の単原子分子理 想気体の状態変化を図のA→B→C→A の順に行った。 A→Bでは体積を一定に保 ち, BCでは絶対温度を一定値に保っ た。 また, CAでは体積と絶対温度が比 例するように状態を変化させた。 状態 A での絶対温度は T , 状態 C での体積は Voであ った。 気体定数をRとする。 To T 絶対温度 (1) 状態 A での体積を求めよ。 Vo O B. (2) 状態 A での圧力を求めよ。 (3) このサイクルにおいて、圧力と体積の関係を表すグラフの概形をかけ。 ただし,グ ラフには状態A, B, C での圧力と体積を記入し、変化の向きを示す矢印も記すこと。 (4) A→Bの過程で気体が外部へ放出した熱量を求めよ。 (5) CA の過程で気体が外部にした仕事を求めよ。 (6) C → Aの過程で気体が吸収した熱量を求めよ。 (7) B→Cの過程で気体が放出した熱量をQとする。 A→B→C→Aの1サイクル で気体がした正味の仕事 [外部にした仕事] -[外部からされた仕事]) を求めよ。 (8) このサイクルの熱効率を求めよ。

回答募集中 回答数: 0
物理 高校生

物理の試験範囲に該当するページを教えてください🙇‍♀️🙇‍♀️

CONTENTS」の学習内容 基・・・ 「物理基礎」の学習内容 序章 物理の基礎練習・・・・・・ 1 物体の運動・ 2 落下運動 特別演習 第Ⅰ章 力学Ⅰ 三角比とベクトル ③3 力のつりあい 4 運動の法則・・ 特別演習 ② 物体が受ける力のみつけ方 ③ 運動方程式の立て方 5 剛体にはたらく力・・・物 ⑥6 力学的エネルギー・・・ 基 総合問題 77 運動量の保存 8⑧ 円運動 19 単振動・・ ⑩0万有引力 総合問題 (7) 基物 基物 ・基 第Ⅱ章 力学ⅡI 総合問題 [物 物 物 第Ⅲ章 熱力学 11 熱とエネルギー・・ 12 気体の法則と分子運動 4 14 26 30 40 48 52 60 68 80 86 96 108.56 118E76 13 気体の内部エネルギーと状態変化 150 第IV章 波動 14 波の性質 15 音波 ⑩6 光波 総合問題 01 & 0 第V章 電気 17 電場と電位・・ 18 コンデンサー 19 電流・ 総合問題 基物 166 基物 物 180 192 000000000 ( 206 物 210 物煙設 222 基物 232 248 SU It 第VI章 磁気 20 電流と磁場・ 物 21 電磁誘導・ 物 22 交流と電磁波・ ・・・・・・・・・ 物 総合問題 第VII章 原子 [物 1268823 電子と光・ 24 原子の構造・ 25 原子核と素粒子・・・・・・・物 問題 1321 論述問題 162 資料・ 略解‥ -mo A. IX IA38-moNI 1409** ***TONIERE 20 252 262 272 282 286 300 306 318 322 ④ 微分・積分と物理 326 331 337

回答募集中 回答数: 0
物理 高校生

気体分子運動論の証明についてですが、 写真の青枠の部分に注目すると、N=n/NAより、 気体の状態方程式は、PV=(N/NA)RTと書き換えることができ、この式に、PV= (Nmv²/3)を代入して、 変形していくと、公式である、mv²/2=3RT/2NAという形になります... 続きを読む

のベクトルの書 ところで v2 = 0x2+uy2+uz! より = 0x^2+b2²2+02²2² x,y,z 方向は物理的には同等だから(特にある方向で分子が速いとか遅いと かはないはず) x2 = by2 = 12² よって b2=30x2 ③,④より F= よって Nmv² 3L この結果を状態方程式 PV=nRT= N NA = P=F Nmv2 Nmv2 L-S 3L³ 3 V ⅡI 気体の熱力学 -RT と比べてみれば (PV) Nm NORT これより 1/12m2 2.0T Nmv² 3. 3 NA NA 定数は平均に関係しないから、1/12m/1/2に等しく,分子の運動エネル ギーの平均値を表していることになる。 気体の内部エネルギー 分子の平均運動エネルギー 1/2mv=12/2017.T=12/2kT NA v² めやす ちょっと一言 この式は重要。温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また, 分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。 定数 R/NA はんと書いてボルツマン定数とよんでい る。 13 8 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃ の酸素の v2を求めよ。 酸素の分子量を32, 気体定数を8J/mol・K とする。 内部エネルギーUとは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ)では U=Nx. 1x1/2mv=N mv=N×32321T=23NRT="2nRT X2 NA NA 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例することが わかっている。 内部エネルギーは温度で決まる

未解決 回答数: 0
物理 高校生

熱力学の問題です。最後の問題の言ってることは分かるのですが、圧力一定と考えるならシャルルの法則でも良くないですか?そうするとべつのこたえがてできます

容器内に閉じ込められた理想気体の膨張収縮について,以下の問に答えよ。ただ し、気体定数はRとし、単原子分子気体の定積モル比熱はCv=2R で与えられる。 理想気体の断熱膨張を気体分子の運動の観点から考察してみよう。図1のように、 理想気体が断面積Sの円筒状のピストン付き容器に封入されている。 気体が封入さ れている部分の長さは、ピストンをx軸方向に速度 uで動かすことで,変えること ができる。気体は単原子分子 N 個からなり,各気体分子は質量mの質点とみなすこ とができる。ただし、重力の影響は無視する。また,容器の壁面やピストンは断熱材 でできており、表面はなめらかである。 このとき, 以下の問に答えよ。 ピストン 断面積 S V y m V u X 長さ l 図 1 (a) ピストンが静止している状況 (u = 0) を考える。そのときに, 容器内部の気体 と壁面やピストンとの間に熱のやりとりのない状態のことを,以下では断熱状態と 呼ぶ。 このような断熱状態にあるためには, 気体分子とピストンとの衝突は弾性衝 突である必要がある。 なぜ非弾性衝突では断熱状態とみなすことができないかを説 明する以下の文の空欄(ア)~(キ)に当てはまる数式または語句を答えよ。 ただし,空欄 (ア)~(エ)に対しては数式を解答し,空欄(オ)〜(キ)に対しては選択肢の中から最も適切な 語句を選択のうえ,選択肢の番号で解答すること。 解答欄には答のみを記入せよ。 空欄(オ)に対する解答の選択肢: ① 物質量 ② 内部エネルギー 空欄(カ)(キ)に対する解答の選択肢: 3 熱量 ① 与えられた熱量 ② された仕事 ③ 与えられた物質量 質量 m,速度(by) の分子がピストンと非弾性衝突をする際のはねかえ

解決済み 回答数: 1