学年

教科

質問の種類

物理 高校生

2番の問題の時って、入射してる時のVは波長変わる前と変わらない、fだけ長くなる 屈折したあとはfは入射してる時と変わらない であってますか あと屈折したあとの光の速さは633の時より遅くなりますよね

A 屈折率nの物質中では, 光の速さが空気中の速さの一になる。 屈折率は光の波 17643 KM MOTOR SE J n *86 【8分・20点】 ke& 長によって異なり, 水の屈折率は可視光線の範囲では, 図1に示すように波長が長く なるにつれて減少する。ただし,空気の屈折率は1とする。 いま図2に示すように, 空気中から水槽に入射角iで 633nm (赤色) のレーザー光 を入射したところ, 光線は水中では図のように屈折角の方向に進んだ。 205 明 **** 1.345 の1.340 屈 折 1.335 率 1.330 レーザー光 JAN G 1 400 450 500 550 600 650 波長(nm) 図1 ONES 151 図2 OTHEOS こる側の 問1 レーザー光の水中での波長と振動数は,空気中のそれに比べるとどのようにな るか の ① 波長も振動数も変化しない。 ②波長は長くなり,振動数は変化しない。 ③波長は短くなり, 振動数は変化しない。 ④ 波長は変化せず, 振動数は大きくなる。 ⑤ 波長は変化せず, 振動数は小さくなる。 問2 レーザー光の波長を 515nm (緑色) に変え, 同じ入射角で入射したとき,水中 に入った光は,633nmの場合に比べてどのように変化するか。 ① 屈折角も, 光の速さも一定で変化しない。 ② 屈折角 ③ 屈折角 ④ 屈折角 がわずかに大きくなる。 ⑤ 屈折角がわずかに小さくなる。 光の速さが大きくなる。 は一定のまま, 光の速さが小さくなる。 は一定のまま,

回答募集中 回答数: 0
物理 高校生

この問題の解説で、赤線で囲ってあるところの考え方(なぜこういう計算になったのか)がよく分かりません。 教えて下さい。

8 必修 基礎問 v-tグラフ x軸上を運動する物体Aを考える。 物体A は原点O(x=0[m]) の位置にあり, 時刻 t=0 [s] に動き始め, 時刻 t=8 [s] で停止 した。 右図は物体Aの速度と時刻 tの関係 を表すグラフである。 このとき, 以下の問い に答えよ。 ただし,x軸の正の向きに動くと きの速度を正とする。 間 1時刻 t=5 〔s〕までの物体Aの加速度α 〔m/s2〕 と時刻 tの関係を表 すグラフは,次のどれか。 正しいものを1つ選べ。 (1) (1) ② ③ a [m/s2] 2 6 4 2 0 a [m/s] 345 ++t[s] a [m/s²) 6 4 2 0 12 a [m/s²) 2 1 ++-t[s]. 0 345 2 0 v [m/s] 3 2 1 0 -1 -2 12 345 Airit[s] 2 3 12 12 (2) である。 問2 原点から最も離れた物体Aの位置のx座標は X 間3 時刻 t=5 [s] までの物体Aの位置 〔m〕と時刻t [s] の関係を表す グラフは次のうちどれか。 正しいものを1つ選べ。 (3) x〔m〕 ② x[m〕 ② x[m] 3 x[m] 4 1 12345 4 時刻 t=8 [s] における物体Aのx座標は (4) のりは (5) である。 6 to 2 0 物理基礎 6/7/8 *t[s] (4) 345 riit〔s] 12345 〔6〕 12345[s] 12345 ●v-tグラフ 速度 (ベクトル) の時間変化を表す。 で,これまでの道 (龍谷大改) 精 ●着眼点 1. グラフにおける正の速度の向きが,加速度, 変位の正の向きであ る。 (加速度の向き) (グラフの傾きの符号) 2.v=0 となる位置は、速度の向きが変わる位置 (折り返し点)である。 着眼点 1. 変位は, グラフとt軸が囲む正と負の面積の和である。 2. 道のりは,面積の絶対値の和である。

回答募集中 回答数: 0
物理 高校生

模試の復習をしたいので解説お願いしたいです

〈注意〉 物理の受験者は、次の表に従って4題を解答してください。 選択問題 必答問題 1, 2, 3, 4 物理問題 【物理 必答問題】 1 次の文章を読み、 後の各問いに答えよ。 (配点30) A 解答は物理の解答用紙に記入してください。 斜面 SPHAL 161052 図1のように、 水平面となす角度が0のなめらかな斜面があり、 斜面上には表面がなめら かな壁 (斜面に垂直に立てられた薄い板)が設置されている。 壁の区間 AB は水平な直線に, 区間 BD は斜面上の点Oを中心とする半径rの半円になっており, それらは点Bでなめらか に接続されている。 点Bは半円の最下点,点Dは半円の最上点である。 壁の区間 AB 上に は,質量mの小球Pと質量Mの小球Q があり、その間にばね定数kの軽いばねを壁の区間 AB に沿って水平方向に置き,PとQをばねの両端にそれぞれ手で押しつけてばねを自然の 長さからxだけ押し縮めた状態で静止させている。 PとQから同時に手を静かにはなすと ばねが自然の長さに戻ったときにP と Q はばねから離れ, その後, Pは点Bを通過した。 ば ねは壁の区間 AB に沿って水平方向に伸び縮みするものとし, Pは常に斜面上を運動するも のとする。 また、ばねから離れた後のQは, 壁に沿って運動し,点Aに達した後,斜面の 外に出るものとする。 重力加速度の大きさを」とし、空気抵抗は無視できるものとする。 QばねんP Mcounomom 壁 図 1 - 2- B 選択問題の出題内容 O (60分) 水平面 C 問1 ばねが自然の長さよりxだけ縮んでいるとき, ばねの弾性エネルギーはいくらか。 問2 ばねが自然の長さに戻ったときの P Q の速さをそれぞれ, Vとする。 ばねが自然 の長さよりxだけ縮んでいるときとばねが自然の長さに戻ったときについて, P, Q 全 体の運動量の水平成分が保存することを表す式を答えよ。 問3 問2のはいくらか。 m, M, k, x を用いて表せ。 ただし、 解答欄には結論だけでな 考え方や途中の式も記せ。 点Bを問2の速さで通過したPは, 壁の内側に沿って斜面を上昇し, ∠BOC=90° と なる点Cを通過した後, 点Dから飛び出した。 問4Pが点Cを通過するとき,Pの重力による位置エネルギーはいくらか。 ただし, 点 Bを通る水平面を重力による位置エネルギーの基準面とする。 mor 9m9 問5 Pが点Dを通過するときの速さを、 問2の”およびr, 9, 0 を用いて表せ。 問6 Pが点Dを通過する直前に,Pが壁の内側から受ける力の大きさを, 問2の”およ ぴr, m, g, 0 を用いて表せ。 の最小値を求めよ!!! 問7 Pが点Dを通過するための問2の』の最小値を求めよ。 点Dから飛び出したPは, 壁の区間 AB上のある位置に到達した。 CAME 問8点Dから飛び出したPが到達した, 壁の区間 AB上の位置の, 点Bからの距離の最 小値を求めよ。 -3- 物 理

回答募集中 回答数: 0
物理 高校生

この全ての問題の答えわかる方いらっしゃいましたら教えて欲しいです!

問題4 図のように、 直線部 AB, CD に半円部を組み合わせた形の走路の上を, 振動数 んの音を出しながら一定の速さで反時計まわりにまわっている車がある。 観測者 が一方の半円部の中心Pにいて、車からの音を聞いている。 問 | 観測者に聞こえる音について, 述べた文のうち誤っているものを、 次の①~④ のうちから一つ選べ。 D ①AB間では、車は点Pから遠ざかるので、 そのとき車の出す音は振動数の 音より低く聞こえる。 ② BC間では、車は点Pから遠ざかりも近づきもしないので,そのとき車の出す 音は一定の高さで聞こえる。 ③ CD間では、 車は点Pに近づくので、そのとき車の出す音は振動数fの音より高く聞こえる。 ④ DA間では, 車は点Pから遠ざかりも近づきもしないので,そのとき車の出す音は一定の高さで聞こえる。 問2 車が走路を2周するとき、 観測者に聞こえる音の振動数 ~④のうちから一つ選べ。 fと の差AFFの時間変化を表すグラフとして最も適当なものを、次の① 問題5 図(a)のように,2枚の平面ガラス板に細長い円柱をはさんでくさ び形の空気層をつくり, 単色光を真上から入射させた。 真上から 見ると図(b)のような等間隔の明暗の干渉縞が観測された。 干渉 稿は図 (c) に模式的に示すように、 くさび形の空気層の上下の境 界面からの2つの反射光の干渉によって生じる。 この装置を使っ て、細長い円柱の直径を測定することができる。 問1 オレンジ色の単色光(空気中での波長5.9×10-7m) を用い て、ある細長い円柱の直径を測定する実験を行った。 このとき, 上に置いたガラス板の左端と円柱の間に観測された干渉縞の 明線の本数は全部で210 本であった。 この円柱の直径は何 mm か。 最も適当な数値を、 次の①~⑥ のうちから一つ選べ。 ⑩ 1.2 ② 0.62 ③ 0.12 ④ 0.062 ⑤ 0.012 [⑥] ? M M m ti [時間 [時間] [時間] 0.0062 3 B 反射光 入射光 細長い円柱 問2 次の文章中の空欄 アイの中に入れる語句として最も適当なものを、 下の①~③のうちからそれぞれ一つ選べ。 ただし、同じものを繰 り返し選んでもよい。 なお, 「水で満たす前」とは,問の場合を指す。 この実験で、単色光をオレンジ色から青色に変えたとき、 干渉縞の数はア。次に, 単色光をオレンジ色にもどしてくさび形の空気層を水で 満たしたときに、やはり干渉縞が観測された。 このとき、干渉縞の数は水で満たす前と比べてイ ① 増加した ② 減少した ③ 変わらなかった

回答募集中 回答数: 0
物理 高校生

(2)の問題です。 赤線の2πx/16とはどういうことでしょうか? 自分で調べた結果、 y=Asin2πx/λ というものが出てきましたが、よくわかりません。 y=Asinωtならわかるのですが、、、 ご教授よろしくお願いします。

解説 (1) 図か 波が生じている。 周期 T = 0.40s, 波長 = 2.0m²である。 波の速さをv[m/s] として, 発展例題30 正弦波の式 物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y 〔m〕 , 時刻 t[s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sin を用いた式で表される。 それぞれの式は、波の波長や周期振動のようす をもとにして考えることができる。 「解説」 (1) 波は 0.10s間に2.0m進んで 2.0 おり,速さは, 0.10 図から, 波長 入=16mなので, 周期Tは, T=1_16 V 20 振動数fは, = 0.80s f: V= = 1 T 1 0.80 =20m/s 1.3Hz LIEKS (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2ヶ異なり、 t=0の とき,x=0の媒質の変位はy=0 なので,位置 0 -0.20 -= 1.25 2 1 10 -1 -2 y〔m〕 I 2 1/ Y 10 進む向き I 1 エ mo8-04 (1) 発展問題 356 1 20 5 TCX 8 *[m〕 PE TXC x での位相 (sinの角度部分)は,2- x 十 2x 1/6 = 480 と表される。また, x=0から x>0 に向かって まず波の山ができており, 波の振幅が2.0m な ので,求める波形の式は, y=2.0sin- WITH TH (3) 媒質の振動では1周期 (T= 0.80s) 経過する と位相が2ヶ進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、 時刻におけ 0.80 る位相 (sin の角度部分) は, 2- = 2.5t と 表される。また,x=0の媒質は,t=0から微 小時間後に負の向きに動くので、求める変位y TEST y=-2.0sin2.5mt の式は, 139

回答募集中 回答数: 0
物理 高校生

ex2で質問です。 なぜvblはEを超えて電流が逆流することはないのですか?

100 電磁気 (別解) 抵抗Rを見てみる。 bからaへ電流が流れている。 だからbが高電位。 (3) PQ は等速度で動いているから,力のつり合いが成りたつ。 電磁力は左向き b と Q,aとPの電位はそれぞれ等しい。よって Qが高電位。 に働くから、外力は同じ大きさで右向きである。 外力F=電磁力IBl=B212 R . P=Fv=vBL)2 R (別解) エネルギー保存則よりPはジュール熱に等しい (外力の仕事分だけジュー ル熱が発生する)。 P=RI2=R(vBL/R)2 電磁誘導ではエネルギー保存則にも気を配りたい。 以上をファラデーで考えると, PQba がコイルで, Bは一定だが面積Sが増していくため下向きに貫く磁 束が増す。 そこで上向きの磁場をつくる向き, すなわ ちP→Qの向きに電流を流そうとする (事実, 回路が 閉じているので流れる。) 4tの間の磁束の増加は右図 の斜線部に等しく, 4Φ=Bxwat : V=40/4t=vBl EX2 EX1に続いて, ab間にRの抵抗と起 電力Eの電池をつなぎ, スイッチを付 ける。 PQ をレール上で静止させた状態 でスイッチを入れる。 外力は加えない。 (1) PQ の速さがぁになったときの電流 I を求めよ。 (2) 十分に時間がたったときのPQ の速さを求めよ。 b EZ a a Qv4t 67 EX1 で導体棒 PQ がrの抵抗をもつ場合の電流Iと,Pに対する Q の電位 を求めよ。 V. High レールがなくてPQだけが磁場中を動いているとしよう。 コイルにあたる部分がないのにどうしてファラデーを適用 していくかというと、上のようなレールを仮想的に敷いて 考えればよい。 右の図のように右側にコイルを仮想して考 P えてもよい。 このようにファラデーには融通無碍な所がある。 ↑何ものにもとらわれなく自由 ゆううむげ Bl P Q Q ity P 4p at te B 減少 解 (1) スイッチを入れるとQからPへ電流が流れ, PQ は 右向きに電磁力を受け動き出す。 Ex1 と同様. PQ を電池に 置き替えると右の図になる。 キルヒホッフの法則より E-Bl=RI I=E-VBI R IはQ→Pの向き, このように電池があると必ずしも 誘導起電力の向きにIが流れるわけではないことにも注意。 (2) QからPへ流れる電流Ⅰによる右向きの電磁力がか BlがEを超えて電流が逆流することはない。 Ivの時間変化は右のようになる。 V を増していく。 やがてBがEに等しくなると上の式よ りIは0となる。 すると電磁力も消え, PQ は等速度運動 に入る。又、十分時間か立っと電流は流れないと考えられる Bl=E より 02 BU ↓ E P6 電磁誘導は現象の進行を妨げる E ちょっと一言 EX1や2で,もし, PQ の長 さがレールをはみ出していたとしても 答えは何も変わらない。 確かに PQ 間 の誘導起電力はBLあるが、 回路と して役に立っている部分はvBlだけ だし、はみ出し部分には電流が流れな いので電磁力もIBI でよい。 I 1283 やがては等速 等速度は力のつり合い V₂ P I 68 辺の長さ a, bの長方形コイルを一定の速さで 幅2αの磁場(磁束密度Bで手前向き)を横切らせる。 コイルの抵抗をR, 辺PQが磁場に達したときを t=0 とする。 次のグラフを描け。 (1) 電流の時間変化 (PQの向きを正) (2) コイルを引く外力Fの時間変化 (右向きを正) 101 Q OTT Q V V vBl P Q V a Jp IP vi 10

回答募集中 回答数: 0