学年

教科

質問の種類

物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

速度の合成の(4)で、CDを求める所からイマイチ理解出来ないので、誰か噛み砕いて教えて欲しいです

1. 速度の合成 図のように、一定の速さで一様に流れる川に浮かぶ船の運動を考える。 船は、静止している水においては一定の速さ vs (vsv) で進み, また、瞬時に 向きを自由に変えられる。 最初, 船は船着場Aにいる。 Aから流れに平行に 下流に向かって距離L離れた地点をB, A から流れに垂直に距離W 離れた地 点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは無 視できるものとする。 C D 川 WW ひろ 三 A M B L (1)地点AとBを直線的に往復する時間 TB を L, vs, v を用いて表せ。 →正 (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流れに垂直に 船が進むようにして,地点AとC を直線的に往復する時間 Tc を W, vs, v を用いて表せ。 (3)L=Wのとき, Tc を TB, vs, v を用いて表せ。 また, 時間 Tc と TBのうち長いほうを答えよ。 (4)船首の向きを, AC を結ぶ直線に対し角度8 (80)だけ上流向きに向けて地点Aから船を進めると 地点Dに直線的に到着する。 その後、地点DからCに、流れに平行に進み, 地点Cに到着する。 地 点AからDを経由し Cまで移動するのに要する時間を W, vs, v, 0を用いて表せ。 分解する [21 東京都立大] (4) Ms. M UsW RUSCOSE MS COS Mssing M Ľ 流されてしまう W=uscostAp AからDの時間 W Ł. CAD=COSO CD = (u-ussingtap mussingi Mscost CD=us-utpe と流されたしかり toc= MSCD の時間 M5-1 u-ussing TtAp+toc こ (1-sin) W (Ms-m) Coso W

回答募集中 回答数: 0