学年

教科

質問の種類

物理 高校生

高校物理力学です。なぜBにFは働いていないのですか?Bに直接Fが接していないからですか?

4-2 運動方程式の立てかた 115 質量 m F A 3 BINDING PLA-CLIP ref: 3255-464 4th 〈問4-2 滑らかな床の上に、質量が無視できる糸でつながれた質量mの物体Aと質量3 の物体Bがあり、右ページ上図のように, 物体Aを力Fで引っ張っている。物体A Bの加速度をα 糸の張力をTとして、 以下の問いに答えよ。 ただし、右向きを ステ 正とする。 41 物体Aに関する運動方程式を立てよ。 2) 物体Bに関する運動方程式を立てよ。 3)αをFとm で表せ。 2物体の運動を扱う問題です。 まずは着目する物体をAとして, 運動方程式を立て、 その後、 着目する物体をBに変えましょう。 解きかた (1) まず、物体Aにはたらく力を図示しましょう。 問4-2 a 質量 3m B 物体Aにはたらくカ 物体の加 物体Aにはたらく力は、重力,垂直抗力, F,張力Tですね。 運動方向の力は,力Fと張力Tですから, 右向きを正とするとき 物体Aの運動方程式: F-T = ma・・・ 注目する物体が 受ける力」のみで判断 正 T F (2) 物体Bにはたらく力は、重力、垂直抗力, 張力Tですから,同様に考えて 物体Bの運動方程式: T=3ma・・・ 答 NAmg ここで注目すべきは,物体Bの運動方程式には,力Fが出てきていないことです。 物体Aが力Fで引っ張られているからといって, 物体Bも力Fで引っ張られてい るわけではなく、物体Bはあくまで張力Tで引っ張られているのです。 「物体Bも力Fで引っ張られてそうだな」という思い込みは禁物です。 着目した物体にはたらく力を1つ1つ図示し, それをもとに運動方程式を立てる, これを徹底してくださいね。 人 にする 同 <解きかた (3) 立てた運動方程式を見ると, αをFとで表すには、Tを消す必要があり ます。 そこで、2つの運動方程式をそれぞれ足し合わせると 物体B にはたらく 正 NB T F=4ma F これより a= 4m では,もう一問やってみましょう。 この問題で、 着目する物体を決める重要性がわかったのではないでしょうか。 D = 1-7 3mg 物体Bに力がはたらいていると 思った人は要注意じゃ はたらく力を図示するステップを踏めば、 間違いは減るぞい W!! Aは糸からも 引っ張られておるぞ 4 物体Bには Fははたらいて いないんだね

回答募集中 回答数: 0
物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0