学年

教科

質問の種類

物理 高校生

高知大学の過去問です。 画像の問2の答えの出し方が分かりません。 運動量保存則と反発係数の式は立てれましたが、そこから答えにたどりつけません。どうやって解くのでしょうか。 至急教えて頂きたいです。

2023年度 高知大 1 図1に示すような。 滑らかな面 AB, CE を有する台上における物体の運動について考える。 AD 間は水平面, DE 間の形状は鉛直に直径2R[m] を有する半円である。 また, 長さ L[m] の区 BCは粗い面となっている。 はじめに 点Aにばね定数k [N/m)のばねの一端を台に固定し, 他端に質量 M [kg] の物体a を取り付け. ばねが自然長の状態で物体に接するように質量m[kg] の物体b (m <M)を置いた。 物体 a, b の大きさ, ばねの質量 空気抵抗は無視できるものとす る。また物体と物体bの間のはねかえり係数をe. 物体b と面BCの間の動摩擦係数をμ 重力加速度の大きさを〔m/s*〕とする。 このとき,計算過程を含めて、 以下の問いに答えよ。 (70点) 1.図2に示すように物体a を左に押してばねを d[m]だけ縮め、静かに手を離した。この時 物体 b に衝突する直前 (図3)の物体の速さ Vo [m/s] を 求めよ。 2. 物体が物体bに衝突した直後(図4) における それぞれの速さ V [m/s] [m/s] を求めよ。 図1 L 2R A B CD 図2 wwo KI 図3 V₁ www 3. 衝突直後に物体は AB間で単振動を始めた。 その振幅 X (m) を求めよ。 図4 V₁ 01 wwG 問1, ばねの弾性力による位置エネルギーと 運動エネルギーは等しいので Vo' = M d² Vo=dJ [m/s] 問2.物体a,bについて運動量保存則より MV=MV1+mvi 反発係数の式より、 V₁-V evo -evo=サーV1 4. 物体は回転せずに区間 BCを通過した。 区間 BCを通過後(図5)の物体bの速さ102 [m/s] を求 めよ。 図5 5. 物体b は区間DEを面から離れずに通過した (図6)。 このときに,点Eを通過する際の速さ [m/s] が満たすべき条件を示せ。 また、その条 件を満たすの最小値を求めよ。 図6 www 6. 物体bが点Eを通過する瞬間に ばねが最も伸びたとする。 そして 物体 b が水平面 AD 着したときに物体がちょうど1往復した。 そのときのkをR,M を含む形で求めよ。 問1,Vo= d [m/s] 問2、V= M-em d JE m+M (1+e)d M m+M [m/s] [m/s] 問5V3≧JOR [m/s] 12の最小値 [SgR [m/s] 問6,b=gM [N/m]

解決済み 回答数: 1
物理 高校生

この問題って反時計回りに回ると上向きの磁場が増えるので、下向きの磁場を作り出そうとしないのですか?

用いて表せ。 た。 位置エネルギー E, を、それぞれ計算し、両者が等しくなることを示せ。 [21 新潟大] しているジュール熱P, と, コイルが単位時間当たりに失 130. 〈回転する導体棒に生じる誘導起電力〉 次の文中の空欄 ア~オに当てはまる式を書け。 また, 空欄 ac には当ては まる向きを図1の①~⑥の矢印の中から選べ。 図2には適切なグラフの概形をかけ。 図1のように、 鉛直上向きの磁束密度の大きさ B[T〕 の一様な磁場中に, 導線でできた点を中心とする半径 am〕 の円形コイルが水平に置かれている。 円形コイル の上には長さαの細い導体棒の一端Pがのせられ,導体 棒の他端は,点の位置で,磁場に平行な回転軸に取り つけられている。 導体棒 OP は点Oを中心として,端P が常に円形コイルと接触しながら, 水平面内でなめらか に回転することができ, そのときの導体棒と円形コイル の間の摩擦はないものとする。 回転軸も導体であり,回 転軸と円形コイルの間に抵抗値 R [Ω] の抵抗Rとスイ ッチSを接続している。 BL 0 ⑥ 円形のコイル 電場の強さ 回転軸 B 抵抗 R 図 1 スイッチS (N/C) 0 a 点 0からの距離(m) 図2 スイッチSを開いて,導体棒を点を中心として鉛直 上方から見て反時計回りに,一定の角速度 rad/s] で 回転させる。このとき導体棒OPの中点Qに位置する 導体棒中の電気量 -e [C] の電子が磁場から受ける力の 大きさは ア 〔N〕 で,その向きは図1の矢印 の向きである。この力は,導体棒中に生じる電場から電子が受ける力とつりあう。導体棒中 に生じる電場の強さは点0からの距離によって異なる。図 2 に OP 間の各点における電場 の強さのグラフを、横軸に点0からの距離をとり,縦軸を適切に定めてかけ。 a 次に,スイッチSを閉じて, 導体棒を点を中心として鉛直上方から見て反時計回りに、 一定の角速度で回転させる。 導体棒が磁場を横切ることにより OP 間に起電力が生じる。 この起電力の大きさはイ 〔V〕 で, 導体棒を流れる電流の向きは図1の矢印b の向 きである。このとき, 抵抗Rで消費される電力はウ 〔W〕 である。 導体棒に電流が流れ ることにより導体棒全体が磁場から受ける力は,大きさが エ [N] で、図1の矢印 [ [c の向きである。 磁場から受けるこの力のすべてが導体棒の中点Qにはたらくと考え ると,導体棒を一定の角速度で回転させるために必要な仕事率はオ 〔W〕 である。 C 〔15 同志社大〕 (図)

未解決 回答数: 1