学年

教科

質問の種類

物理 高校生

物理基礎の問題です。この問題の解き方と答えを教えて頂きたいです🙇‍♀️

㊙87. ジュール熱 8分 電熱線に電流を流し, 断熱容器に入れた水を 加熱する実験について考える。 電熱線の抵抗値の温度による変化は無視で き,電熱線で発生した熱はすべて水の温度上昇に使われるものとする。 問1 図1のように、 断熱容器に 27℃, 100g の水を入れ, 10V の直流 電源とスイッチに接続した抵抗値 20Ωの電熱線を浸し, 10分間電流を 流した。 水をかくはんした後の水温は何℃か。 最も適当な数値を,次断熱容器 の①~④のうちから1つ選べ。 ただし, 水の比熱を4.2J/(g・K) する。 ①28 ② 31 ③ 34 445 問2 電熱線と可変抵抗を使い, 図2のような回路と回路をつくった。 2つの回路において, 電熱 線の抵抗値は同じで,直流電源の電圧は同じ一定値である。 2つの回路に同じ時間だけ電流を流した 後,それぞれの水温を測定した。 さらにその後, 可変抵抗の抵抗値を変化させ, それ以外の条件は同 じにして測定をくり返した。 2つの回路において、電流を流す前後の水の温度差と可変抵抗の抵抗値 の関係を表すグラフとして最も適当なものを,それぞれ下の①~④のうちから1つ選べ。 ただし, 測定に用いた可変抵抗の最大値は電熱線の抵抗値に比べ十分大きいものとする。 回路 回路2 (1) 回路 1 の場合 (2) 回路2の場合 温度差 20 最大値 可変抵抗の抵抗値 温度差 0 可変抵抗 最大値 可変抵抗の抵抗値 図2 の交響ア 温度差 可変抵抗 ww 最大値 可変抵抗の抵抗値 温度差 0 直流電源 WW 水 電熱線 図 1 最大値 可変抵抗の抵抗値 [2015 追試] イに入れる式と単位の組合せとして正しいもの 第4編 電気

回答募集中 回答数: 0
物理 高校生

77の問1、R1にも電流流れてて、Cにかかる電圧はVよりも減ると思って、その分溜まる電気料も減ると思うんですけど答えはCVでした。なぜですか?

78 E U 電気量の関係 ① Q1=Q2+Q3 ② Q=Q2+Q3 3 Q=Q2+Q ④ Q2=Q+Q ⑤ Q2=Q3+Q 問2 図2(a)に示す極板間隔dの平行板コンデンサ に電圧 V をかけたときの静電エネルギーを ひとする。 このコンデンサーに図2 (b)のように 比誘電率&Tの誘電体を極板間にすきまなく挿入 し、電圧 V をかけた。 このとき, 極板間の電場 の大きさと蓄えられた静電エネルギーUを表す式の組合せとして正しいものを 下の①~⑥のうちから一つ選べ。 ① ② Vo d Er Uo Vo d U₁ Q (C) 2×10-6 5×10-6 8x10-8 2x10-5 5x10-5 6 [③] Vo d Er²Uo [⑥] ⑦ V² 2R₂ ⑨ 電気量の関係 Q2=Q3+Q Q2=Qi+Qz Q2=Qi+Qz Q2=Qi+Q2 ⑧ 4 Vo Erd U₁ Vo (a) ⑤ Vo Erd Er Uo Q₁ (C) 8x108 2×10~ E 5 × 10~ 8×10-s 77 コンデンサーを含む回路 ③ 内部抵抗の無視できる起電力 V〔V〕 の電池E に, 抵抗 値がそれぞれ R [Ω], R2 [Ω] の抵抗 R1, R2, 電気容量 C [F] のコンデンサー C, スイッチ Si, S2 を図のように接続 した。 <1992年 本試〉 問1 はじめ,スイッチは両方とも開いており, コンデン サーに蓄えられている電気量は0であった。 この状態で, S のみを閉じた。 十分に長い時間が経って電流が流れなくなるまでに, 抵抗 R」を通 過した電気量として正しいものを、次の①~⑧のうちから一つ選べ。 次に, S」を買い て S2 を閉じた。 コンデンサーの電気量が0になるまでに, 抵抗 R2 で発生したジュー ル熱として正しいものを、次の①~ ⑧ のうちから一つ選べ。 抵抗 R を通過した電気量=1 [C] 抵抗 R2 で発生したジュール熱= 2 [J] LIGUYO _2の解答群 O ①/2/2② v ③/2/2 CV2④ CV2 V V V² 2R1 ⑦ R₁ R2 問2 次に, S2を閉じたままにして, 再びS を閉じた。 十分に長い時間が経ったの コンデンサーに蓄えられている電気量として正しいものを、次の①~⑥のうちから 142 SL 6 Vo Erd Er²Uo 誘電化 R₁ R₂ S₂

回答募集中 回答数: 0
物理 高校生

物理の質問です。リードライトの電磁気で、 (4)のFはx軸の正の向きってあるんですけど、なんで正の向きかわかりません。 電流Iって図の時計回りだから、フレミングの左手の法則で中指を金属棒に沿うと親指はx軸の負の向きになると思うんですが。(T_T)

122 第4編 電気と磁気 基本例題 76 磁場を横切る金属棒に生じる誘導起電力 真空中に金属レールが水平に置かれ,その上を金属棒がなめらかに移動でき るようになっている。 金属棒の長さは1〔m〕 で, レールの間隔に等しい。 図1 のように,xyz軸をとる。 このとき,磁束密度B [T] の磁場がx軸の正の向き に加えられている。 また, 金属棒の抵抗は R [Ω] である。 b 図2のように, 端子 a,b 間に起電力 E [V] の電池 (内部抵抗0) を接続したところ, 金属棒は動き始めた。 x軸の正の向きに速さ 〔m/s] で動いている金属棒について (1) 両端に発生する誘導起電力の大きさ V〔V〕 を求めよ。 流れる電流の大きさI 〔A〕と向きを求めよ。→ 19 (3) 加わる力の大きさ F〔N〕を求めよ。 43132&(2 MBS (4) 十分な時間が経過して金属棒の速さが一定になったときの速さv 〔m/s] を求めよ。 Ⅰ (1) おもりの速さ(一造 (1) V=vBl〔V〕 (2) キルヒホッフの法則Ⅱより E-V=RI よって I= E-vBl R 〔A〕,軸の正の向き 件の図2で電池をつかっているから Let's Try! 111 磁場を横切る導線に生じる誘導起電力 B a レール y Z 2 26 金属棒 抵抗 R x 図 a E 141. で降下する。 >>> 141 1 ○磁場 $v[m/s 指針 金属棒に生じる誘導起電力の大きさはBl〔V〕 である。 向きは、レンツの法則と右ねじの法則とから判断する。 解答 z 軸の負の向きの磁場をつくる向きに誘導起電力 (3) F=IBl= E-vBl R [BU [N] Vが発生 (レンツの法則)。 V の向きはEの向きと反対 になる (右ねじの法則)。 (4)Fはx軸の正の向きでアフレミングの左手の法則), 棒 は加速され ”の増加とともにVも増す。 VがEに 達すると, ② ③ 式より I=0, F = 0 となり, 速さは ひで一定になる。 ③ 式で, v=vo のとき F=0 より E E-vo Bl=0 よって = (m/s] BU 軸の 正の向き 図2 車の軌

回答募集中 回答数: 0
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0