学年

教科

質問の種類

物理 高校生

物理の誘電起電力の質問です。 緑で引いた、T/2のときなぜB0Sになるのかわかりません汗グラフとの関係を教えて頂きたいです。

等の法則という。 だけ変化すると 導起電力が発生す 右ねじを立て、右 磁界の正の向き の 5 の正負 10 の正の向 40<0 15 FOR 図3 起電力の正負の決め方 磁束が減っていると 例題1 コイルに生じる誘導起電力 断面積が S〔m2〕で, 抵抗の無視できるN回巻 きのコイルにR[Ω]の抵抗をつなぎ, コイルの 面と垂直に一様な磁界をかける。図Aの矢印の 向きの磁束密度を正として, 磁束密度B[T]を 図Bのように変化させた。 (1) 電流が抵抗をaからbの向きに流れるのは どの時刻か。 また, そのときの電流の強さは いくらか。 T (2) 時刻 - [s]のとき, 点bに対する点aの電 位はいくらか。 指針 AB 4t から磁束の変化を読み取る。 I= (2) t= 40 4t T 2 AB 磁束の変化 は、 = BS より S と表される。 B-t グラフの傾き 4t V 2NB S R RT 解 (1) レンツの法則より、電流が抵抗をaからbの向きに流れるときは,正の向 きの磁束密度の大きさが減少するときや、負の向きの磁束密度の大きさが増 加するときであるから,図Bより, 2T<t<3T このとき,磁束〔Wb]は, 時間 T[s] の間に -2BSだけ変化するから, -2BOS 2NBOS 誘導起電力 V[V]は, V-N4Nx T -〔V〕 4t T したがって、電流の強さI [A] は,オームの法則より, -(A) V'=-N- 40 ⊿t a R =-Nx b ①図 B[T] Bo BOS T する点aの電位は, 誘導起電力 V' 〔V〕 に等しいから, NBS T -Bo- ①図B では磁束Ø〔Wb]は時間T [s] の間に BoS だけ変化する。点bに対 O -(V) B T 2T 3T 4Tt(s) d 類題 右の図のように, xy平面上の0<x<2L の範囲には紙面に垂直に裏から表の向きに 磁束密度B[T]の一様な磁界がかけられて いる。 1辺がL [m] の正方形のコイルが, 辺abを軸と平行にして, x軸の正の向き に一定の速度v[m/s]で移動している。 辺 abがy軸を通過した時刻を t=0 として, 辺cdがx=2L の位置を通過する までの間のコイルを貫く磁束の変化とコイルに生じる起電力Vの変化をグラ フで表せ。 ただし, 起電力は図の矢印の向きを正とする。 略 a OB 2Lx 第4章 電磁誘導と電磁波 297 第4章 BE

未解決 回答数: 1
物理 高校生

EX4で、なぜ2πでωを割るのかわからないです。

(x) B' S=12で, dB dt dt はグラフの傾きである。 $ 72* 半径aの円形領域で,紙面の裏から表へ向かう磁束密 度が単位時間あたりの一定の割合で増している。 半径 のコイルに生じる誘導起電力の向きはXかYか。 また, その大きさを, (1)r≦a と(2)r>αの場合について求 めよ。 dt EX 4 半径r[m]の円形レールの一部をカットし、中 心と端Aを抵抗 R [Ω] で結ぶ。 OP は金属棒 で, 時刻 t=0 に OA の位置から一定の角速度 ③ [rad/s〕 で反時計回りに回転させる。 磁束密度 B [Wb/m²] の磁場が紙面の表から裏の向きにか かっている。 R以外の抵抗はないとする。 (1) 時刻t [s] においてコイル OAP を貫く磁束を求めよ。 (2) OA を流れる電流の強さと向きを求めよ。 .. V= V Brew R 2R /X V=(rw+0) Br=Brw 2 少々手荒いが、 分かりやすさが取りえ! V B (1) OP は角度wt回転している。 扇形OAP の面積は円の面積 πr² を中心 wt で比例配分し, S=πr2x- p=BS=Br³wt (Wb] 2π (2) この結果より 40=1/2 Brwat B O R a B I 〔A〕 上向きの磁場をつくる向き,すなわち0Aの向きに流れる。 tro ト色 導体棒が動いているのでBlを利用する手もある。 ただ, 速さ OP 間の場所ごとに違う。 Pは最大の速さで rw, 0 は最小で0 から”としては平均の速さを用いる。 3 V P

回答募集中 回答数: 0
物理 高校生

EX4で、なぜ2πでωを割るのかわからないです。

(x) B' S=12で, dB dt dt はグラフの傾きである。 $ 72* 半径aの円形領域で,紙面の裏から表へ向かう磁束密 度が単位時間あたりの一定の割合で増している。 半径 のコイルに生じる誘導起電力の向きはXかYか。 また, その大きさを, (1)r≦a と(2)r>αの場合について求 めよ。 dt EX 4 半径r[m]の円形レールの一部をカットし、中 心と端Aを抵抗 R [Ω] で結ぶ。 OP は金属棒 で, 時刻 t=0 に OA の位置から一定の角速度 ③ [rad/s〕 で反時計回りに回転させる。 磁束密度 B [Wb/m²] の磁場が紙面の表から裏の向きにか かっている。 R以外の抵抗はないとする。 (1) 時刻t [s] においてコイル OAP を貫く磁束を求めよ。 (2) OA を流れる電流の強さと向きを求めよ。 .. V= V Brew R 2R /X V=(rw+0) Br=Brw 2 少々手荒いが、 分かりやすさが取りえ! V B (1) OP は角度wt回転している。 扇形OAP の面積は円の面積 πr² を中心 wt で比例配分し, S=πr2x- p=BS=Br³wt (Wb] 2π (2) この結果より 40=1/2 Brwat B O R a B I 〔A〕 上向きの磁場をつくる向き,すなわち0Aの向きに流れる。 tro ト色 導体棒が動いているのでBlを利用する手もある。 ただ, 速さ OP 間の場所ごとに違う。 Pは最大の速さで rw, 0 は最小で0 から”としては平均の速さを用いる。 3 V P

回答募集中 回答数: 0
物理 高校生

解答が載っていなかったので、解答解説よろしくお願いします(_ _)

次の問いの空所( )をうめて文章を完成させよ。 Ⅰ 図1のように、長さL [un] の鉛直な軌道PQ, 点Oを中心とする半径L 〔m〕 で中心角90度の円弧状の軌道 QR, およ び水平な軌道 RST がなめらかにつながっている。 区間 RS は長さL 〔m〕 であらく,それ以外の区間はなめらかである。 質量 m (kg) の小物体AをPから静かに放したところ, A は軌道に沿って運動し, ST上で静止している質量 (kg) の小物体Bと弾性衝突した。 ただし,重力加速度の大きさをg 〔m/s2] とし, Aと軌道RS との間の動摩擦係数をμ'′と する。 また, すべての運動は同じ鉛直面内で起きるものとする。 L □A P L 問4AとBが衝突した後のBの速さは ( のときである。 0 ER 問1AがRを通過する直前のAの速さは ( きさは ( ) [N] である。 問2AがSを通過した直後のAの速さは( 問3AがRを通過してからSに到達するまでの時間は ( L S パ E S R2 ⅠⅠ 図2のように, 抵抗値 R [Ω] の電気抵抗 R1, 可変抵抗器 R2, 内部抵抗の無視できる起電力 V [V] の電池 E, 電気容 量C〔F〕 のコンデンサー C, およびスイッチSからなる回路がある。 はじめSは開いており, Cに電荷はたくわえられ ていないものとする。 C R1 図2 B T [ms] であり,このときAが軌道から受ける力の大 ) [m/s]である。 ) [s] である。 ) (m/s) である。 問1 R1 を流れる電流の大きさが Io [A] であったとすると, R2 の抵抗値は ( [Ω] である。 問2 R2 の抵抗値を変え, R2 の両端の電圧を V, 〔V〕 とした。 このとき, R2 の消費電力はV2, V, R を用いて ) 〔W〕 と表される。 また, R2 の消費電力が最大となるのはV2が( ) (V) 問3 つぎに, R2 の抵抗値をR [Ω] に変えてからSを閉じた。 Sを閉じた直後に R」 を流れる電流の大きさは ( ) [A] であり, Sを閉じてからじゅうぶん時間が経過した後, Cにたくわえられている静電エ ネルギーは ( ) [J] である。

未解決 回答数: 0