学年

教科

質問の種類

物理 高校生

なぜこれはv0tがないのですか? そしてなぜ加速度が−になってるんですか【1番聞きたいこと】 またこの連立方程式を絵で分かりやすくして教えてくれたら嬉しいです。

Step 3 ◆ 解答編 0.59~63 34 必解 117 材木への弾丸の打ち込み 右図のように、水平でなめ らかな床の上に,質量 M〔kg〕の材木が静止している。この 対して止した。 このとき, 弾丸と材木との間にはたらく水平方向の力の大きさは、 材木に水平方向に質量 m[kg] の弾丸を速さv[m/s]で打ち 込んだとこころ弾丸はある深さだけ材木にくい込み、材木に m v でF[N] であった。この現象については,重力の影響は考えなくてよいものとする。 (1) 弾丸が材木に対して静止したときの床から見た材木の速さはいくらな 弾丸が材木にくい込み始めてから材木に対して静止するまでの間に, 力積の大きさはいくらか。 119 空中での分裂 空止 MOR LESOTH 08.0 弾丸が材本にくい込み始めてから材木に対して静止するまでの時間は (4弾丸が材木にくい込んだ深さはいくらか。 30 A hot 118 ボートから飛び出す人 静水面上を質量 50kgの人が乗ったボートが3.0m/s 速さで動いている。 ボートの後方に向かって人が飛び出したため, ボートの水面に対 る速さは 4.0m/s になった。また, 飛び出した人の速さは人が飛び出した後のボート ら見て 6.0m/sであった。 飛び出した人の水面に対する速さと, ボートの質量はいく か。 ただし、水の抵抗は無視できるものとする。 らか。 角 必解

回答募集中 回答数: 0
物理 高校生

至急です!!🚨 自動車Aと自動車Bの速度が同じ大きさだと、車間距離は変化せず保たれたままになるのはなぜですか? 回答よろしくお願いします🙇‍♀️

例題 5.19 t(s) 5,19 8.0 s] リード D 速度 (m/s) 物体B 19 等加速度直線運動のグラフ■以下の文章を読みに適当な数値を入れよ。 一直線上を物体Aと物体Bが同じ向きに運 動しており、この向きを速度や加速度の正の 向きとする。 物体Aと物体Bの速度と時刻の 関係は右図で示される。 また, 時刻 0sにお ける物体Aと物体Bの位置は同じであるもの とする。 物体Aの加速度は m/s² であ O り、物体Bの加速度は は 4 時刻 (s) m/s2 である。 時刻 2s において、物体Aと物体Bの距離 2 第1章 運動の表し方 エ S である。 また, その時刻において, 物体Bに対する物体Aの相対速度は m/sである。 [19 名城大〕 時刻 0sの後, 物体Aと物体Bの位置が再び同じになる時刻は mである。 B 13 物体 A 20 等加速度直線運動 列車が一定の加速度α [m/s'] で一 [1] 直線上を走っている。 A地点を列車の前端は速さ [m/s] で u 通過した。また, A地点を後端が通過したときの速さは [m/s]であった。 (1) この列車がA地点を通過するのに要した時間 t [s] を, a, u, v を用いて表せ。 (2) この列車の長さ 1 [m] を, a, u, vを用いて表せ。 (3) この列車の中点がA地点を通過したときの速さ [m/s] を, u, vを用いて表せ。 ➡13, 14 ヒント 19 (エ) 求める時刻を t [s] として, AとBの移動距離についての方程式を立てる。 20 列車がA地点を通過する間に, 列車はその長さだけ進んでいる。 オ 15,16,17 A 21 等加速度直線運動 直線上の高速道路を 速さ 24.0m/s で走っていた自動車Bの運転手は, 前方に低速の自動車Aを発見し, ブレーキをかけ て一定の加速度で減速し始めた。 ブレーキをかけた瞬間を時刻 t=0s とすると, Bは t=2.0s に速さ18.0m/sになった。 1501. 一方,速さ 8.0m/sの等速で進んでいたAはt=2.0s の瞬間からアクセルを踏んで 一定の加速度で加速し始めた。 その結果, t=4.0s のとき, 車間距離は最も短くなって 5.0mとなり,衝突をまぬがれた。 A,Bの進行方向を正とする。 (1) まずBの加速度 αB 〔m/S²] を,次にAの加速度 αA [m/s'] を求めよ。 (2) t = 2.0s の瞬間のAとBの車間距離 1 [m] を求めよ。 u

回答募集中 回答数: 0
物理 高校生

紫の線で示した部分の(n-1)tとは一体何を表しているのでしょうか? 教えてください🙇‍♀️

Ⅰ. 図1のヤングの実験の装置で, スリット 図 12933円 S2 の手前に厚さt, 屈折率n (>1) の透明 板を置き,波長入の同位相の光を S1,S2に 垂直に入射させた。 d<l, x<1とする。 x軸上の干渉縞の位置は,透明板を置く (1) 前に比べ,どちらにどれだけ移動するか。 (2) 干渉縞の位置が透明板を置く前と一致す 干し 緑の次数は異なる)ときの透明 板の最小の厚さ to はいくらか。 ⅡI. 装置から透明板を取り除き, 図2のよう 光路長 L₁= t+h₁ |光a 光b L2=nt+lz ->> a → S₁ d Xm= b Sta d 図2 ka n-1 So 光源 T Sil に S1,S2 から等距離の位置にスリット So を置き, 波長の光を入射させ (3) So を上に少し動かすと, 干渉縞の位置はS。 を動かす前に比べてどうなるか。 IS2 M 「考え方 I. 透明板を置いた後・・・ S1, S2 より tだけ手前の位置から点P までの光路差を考える。 光路差 d L₂-L₁ D =(n-1) t+(1₂-1₁) |M n-1 S2| (ヤングの実験と同じ) Sol 【透明板を置いた後の光a,bの光路差】(n-1)+(ーム)(n-1)+4x TOE THROAT 【強めあう条件】 (n-1) t+x=ma (m=0, 1, 2, ...) ml^ _ 1 (n-1) t mid 【明線の位置 xm】 d 【明線の間隔 ⊿x】 ⊿x=Xm+1-Xm= T Sol 12 x軸 x軸 Sil 透明板を置く前はxml- (1) ①から,干渉縞の位置は、x軸の負の向きに (n-1) tだけ移動する。 香川の 白 0 mm 005-mm 001 (2) ②から、干渉縞の間隔 ⊿x は, 透明板を置く前と変わらない。したがって,干渉縞が ⊿x の ちょうどk倍(k=1,2,..)だけ移動すれば,透明板を置く前の縞と重なる。 (n-1)1=k²&v₁ t= k=1のとき, 最小値 to よって, to=- P 透明板を置く前は4x= IM (3) ある (mo 次の) 明線について, So から点Pまでの 光の経路差は次の式を満たす。 (SoS2+S2P)(SoS1+SP)|=mod(=一定) S2| よって, (SoS2-SS1)+(S2P-SP)|=mod... ③ ・S』の位置によらず、 ③の左辺は (右辺が一定値ゆえに) 一定値になる。 以上から, SP-SP の値は, S を動かす前よりも後の方が小さくなる。つまり, 点Pの位 右上の図から, S を動かす前はSS2 = SoS1, So を上に動かした後はSS2>SoS」 となる。 置が下がる。 他の明線も同様であるから, 干渉縞全体がx軸の負の向きに移動する。 mid d 17 d

解決済み 回答数: 1
物理 高校生

問2が解説を読んでもわからないので教えて欲しいです。

気柱の共鳴と音の速さについて考える。 88. 気柱の共鳴 05分) 問1 次の文章中の空欄アに入れる式として正しいものを, 下の①~ ⑥ のうちから1つ選べ。 実験室内に,図のような一端がピストンで閉じられ、気柱の長 さが自由に変えられる管がある。 管の開口部でスピーカーから振 動数fの音を出し, ピストンを開口端から徐々に動かして, 最初に共鳴が起こるときの長さを測定す るとLであった。 さらにピストンを動かし,次に共鳴する長さを測定したところL2であった。 これ より音の速さはア L₁ ③f (L2-Li) (22fL₂ ① fL2 問2 次の文章中の空欄イ Cider Chanel TT BRET L1 A ⑥ f (L2-Li) 5 f(L2-L₁) L2 4 2f (L₂-L₁) (2) Ren L2 { }で囲んだ選択肢のうちから1つずつ選べ。 気柱の長さを L に保ったまま, 共鳴が起こらなくなるまで実験室の気温を徐々に下げた。共鳴が 起こらなくなったのは、管内の空気の温度が下がったため、合脈C SHO D.S SHOS 02.00 ① 音の波長が長くなった ② 音の波長が短くなった ③ 音の振動数が大きくなった ④ 音の振動数が小さくなった ⑤ 音が縦波から横波になった このあと, ピストンの位置を左に動かしていったところ, 管の開口端に達するまでに 管内のイ 共鳴はウ ① 1 回 ② 2 ただし, 開口端補正は無視できるものとする。 と求められる。 ③3 回 ④ 0 回 スピーカー 起こった。 気柱の長さ からである。 それぞれの直後の ウに入れる語句として最も適当なものを、 ピストン 3\m.02.00 [2021 追試] 物理基礎の復習 ③ (波) 67

回答募集中 回答数: 0
物理 高校生

(1)は非保存力がした仕事=力学的エネルギーの変化のように考えたのですが、 (2)の問題との違いはなんですか?? (2)でも 力学的エネルギーの変化量だから =非保存力のした仕事よって(1)と答えが同じになりますか? 課題なので答えわからないです、 教えて欲しいです

(4) 下端0に到達したときの物体Aの速さ (m/s) を求めよ。 e 速さをもっている。運 問題3 〈千葉工業大: 偏差値 40.0~50.0> ばね定数k (N/m) の軽いばねの一端に. 質 量(kg) のおもりAをつけたばね振り子が ある。 このばね振り子をあらく水平な床面上 をもっている。 運Eの化 すべてのカした VAIO V₂=0 @2 immmm Q310 51P -31 に置き. ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のようにAを原点Oから点P(x = 5/(m)) まで引っ張って 静か にはなした。 Aは左向きに運動し始め, 点Oを通過した。 その後, x=-3ℓ (m) の点Qで静止した。 床面とAとの間の動摩擦係数を」とし、重力加速度 の大きさをg(m/s2) とする。 (I) Aが点PからQまで運動する間に、動摩擦力のする仕事 W(N・m) を求 めよ。 (2) Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E(J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 193 is ($4-95². 123 -8K5² (3) — 8k)² = ll_mg t HF K-251² == mg 200 Cop of = サ +K(95²-251²) t

解決済み 回答数: 1