学年

教科

質問の種類

物理 高校生

高1 物理基礎 自由落下のとき、鉛直下向きってかならず書かないでいけないんですか?鉛直投げ下ろしや投げ上げにはないので疑問に思いました

例題 9 自由落下 がけの上で小球から静かに手をはなした。 手をはなしてから3.0s後に小球は水面に達した。た だし、空気抵抗は無視できるものとし、重力加速度の大きさを9.8m/s2 とする。 (1) 静かに手をはなしてから1.0s後の小球の速度を求めよ。 (2) 静かに手をはなしてから 1.0s後の小球の変位を求めよ。 (3) 水面に達したときの小球の速さを求めよ。 (4) 水面からがけの上までの距離を求めよ。 解答 (1) 鉛直下向き 9.8m/s (2) 鉛直下向き 4.9m (3) 29m/s (4) 44m 自由落下の基本プロセス プロセス 0 of.. 解説 (1) 鉛直下向き を正とする 2 y 3 y (m) リード文check 一大きさが無視できる球。 ただし質量はあるとする ②初速度を与えなかった。 vo=0 O Process ○v=0m/s [v[m/s] プロセス 1 正の向きを定め, 文字式で表す 鉛直下向きを正とし, 求める速度を v1 〔m/s] とする。 プロセス 2 自由落下の式を適用する 自由落下の式 「v=gt」より プロセス 3 数値を代入する (2) 求める変位をy 〔m〕 とする。 1 プロセス 1 正の向きを定め, 文字式で表す プロセス 2 自由落下の式を適用する プロセス 3 数値を代入する ひ=9.8×1.0 =9.8 [m/s] 答鉛直下向き 9.8m/s 自由落下の式「y = 1/12912」より y=1/12×9.8×1.0)2 = 4.9 〔m〕 圏 鉛直下向き 4.9m (3) 1 2 3 (4) 1 水面に達したときの速度をv2 〔m/s] と する。 自由落下の式「v=gt」より ひz = 9.8×3.0 3 答 29m/s 水面に達したときの変位をy2 〔m〕 とする 2 自由落下の式「y = 1/29t2」より =29.4 ≒29 [m/s] Hote y2= =1/12/3×9. -×9.8×(3.0)² =44.1 ≒ 44 [m] 水

回答募集中 回答数: 0
物理 高校生

位相がずれるずれないの話は理解できるのですが、なぜずれない方が暗線で、ずれる方が明線なんでしょうか? πずれる方が明線、ずれない方が安全な理由を教えてください。

「ック板にすると、 (3)の答えはどうなるか。 屈折率 1,00) 中に厚さdの膜がある。 空気中で 射させたところ, 膜での屈折角がとなった。 する光①と、点Oから入射して映下部の境界 ANTAR 位相は 変化しない 平面ガラス 平面ガラス of 10 入射光 ②干渉の条件式 図91 で, 干渉す ① 光 ② の経路差は, 空気層の 厚さがdのとき 2d となる。 また、 Op.94 Zoom 光①は, 屈折率の大きい媒質(ガラ ス) から入射し,屈折率の小さい媒 質 (空気) との境界面で反射するので, 位相は変化しない。 一方, 光②は, 屈折率の小さい媒質 (空気) から入射し、 屈折率の大きい媒質(ガラス) と の境界面で反射するので、位相がだけ(半波長分) 変化する。 以上より, 単色光の波長を とすると、干渉の条件式は次のようになる。 明線 : 2d=(m+/1/2)^ (m= 0, 1, 2, ...) 暗線: 2d = m入 (m = 0, 1, 2, ...) 解点P, Qを隣りあう明線の位置とする。 これらの位置での空気層の厚さの差を |4d[m]とすると, 2点間の経路差の違 いは24dであり, これが1波長分に 等しいので 244 ene BA 224 右図のよう した。 SIS2= SP を P -①,②の光が 干渉する 位相はずれる ①図91 くさび形空気層における光の 干渉光②は空気層を往復する分 経路 が光① より 24 だけ長い。 例題 16 くさび形空気層における光の干渉 2枚の平面ガラスを重ねて, ガラスが |接している点Oからの距離L[m] の位 置に厚さD[m]の薄い紙をはさむ。 真 10 上から波長[m] の光を当てて上から L 見ると,明暗の縞が見えた。 このとき, 縞の間隔 4x [m] を求めよ。 Q (59) (60) Ad

回答募集中 回答数: 0