学年

教科

質問の種類

物理 高校生

右ネジをどのようにこれ使ってるんですか?磁力の向きないから分からないですよね。

電車の回生ブレーキは、 減速するときにモーターを発電機として 388 動くコイルに発生する誘導起電力 右図のように。 長い直 線状の導線にI[A]の電流が流れている。 1辺の長さが[m]の正 方形コイルを導線と同じ平面内に置き、矢印の向きにv[m/s]の 速さで動かす。 コイルの辺PSが導線 A から [m]の位置を通過 する瞬間,コイルに流れる電流を求めよ。ただし,コイルの抵抗 R〕 真空の透磁率を仰4 [N/A2] とし, コイルの自己インダ センサー 130 133~ クタンスは無視する。 389] 誘導起電力 右図のように, 鉛直上向きに磁束密度 B[T] の磁界がある。 長さ [m] の金属棒 OP が 点Oを中心 として水平面内を角速度ω 〔rad/s]で回転している。 OP の誘 導起電力の大きさはいくらか。 また, 点0と点Pのどちらの 電位が高いか。 センサー 134 M IN PAD b A S! kr→ JAB 解 390 モーターの原理 右図で, コの字型の回路が水 平面内に置かれていて、 磁束密度B[T]の一様な磁界 が鉛直上向きにかかっている。 Eは起電力 E〔V〕 の電 池 M 質量 [kg]のおもりである。 摩擦はないも のとし 回路を流れる電流のつくる磁界は無視できる ものとする。 コの字型の導線の間隔を[m], 重力加 速度の大きさを g〔m/s ] とする。 導体ab には R[Ω]かり!! 〕 の電気抵抗があるものとし、質量は無視する。 AB a 凸 TES E (1) スイッチ Sを入れたところ,Mは上向きに静かに動き出した。 スイッチを入れた 直後の,回路を流れる電流 I [A] とおもりの加速度α〔m/s'] を求めよ。 (2) おもりの速さが一定になったとき, 回路を流れる電流 電池の消費電力 おもりの 速さ,1sあたりに導体 ab で発生する熱量とおもりを持ち上げる仕事率を求めよ。 132

回答募集中 回答数: 0
物理 高校生

(3)の問題 質量数とアボガドロ数を用いた計算のしかたがわかりません 僕のノートのように計算しては行けないのですか?

反応の前後で減少した量を GM とすると、 JM (反応) - 反応後の質量) AM= (26.9744+1,0087) -(23.9849+4.0015) =-3.3×10 u (2) (1) JMが負となったので、反応後の質量 leV=1.60×10-19Jなので, 4.92×10-13 1.60×10-19 指針 反応前後での質量の減少を⊿M とす ると, 4M2 のエネルギーが放出される。 (3) では, Uの原子数を求め, エネルギーを計算する。 (1) 反応前の質量の和は, 234.9935+1.0087=236.0022u 反応後の質量の和は, 139.8918+92.8930+3×1.0087=235.8109u =3.07 x 10°eV=3.07MeV 3.1 MeV のエネルギーが吸収された。 基本例題88 ウランの核分裂 ウランの原子核に中性子 in が衝突し, 次のような核分裂がおこった。 U÷n →→→→ ¹8Xe+Sr+3n 表には、各原子核と中性子の質量を示す。 1u=1.66×10-27kg, 真空中の光速を3.00×10°m/s, アボガドロ定数を6.02×1023/mol とする。 質量の減少は 236.0022-235.8109-0.1913 u (2) 反応によって減少した質量をkg に換算する。 AM = 0.1913×(1.66×10-27) = 3.175×10-28kg 基本問題 606,607,608,609 in 38Sr 1404 (1) この反応における質量の減少は何uか。 (2) Uの原子核1個あたりから放出されるエネルギーは何Jか。 (3) 1.00gのUがすべて核分裂をしたとき, 放出されるエネルギーは何Jか。 1.00 235 235T 1.0087 u 92.8930u 139.8918u 234.9935 u 放出されたエネルギーEは,E=⊿Mc² から . E=3.175×10-28 × ( 300×108) 2 = 2.857×10- ….. ① 2.86×10-1J (3) 1.00gの25Uの原子数は、質量数が235 な ので, x (6.02×1023) = 2.561×1021 求めるエネルギーE' は, ①の値から. E'=(2,857×10-1)×(2.561×1021) =7.316×10¹0 J 7.32×10¹0 J

回答募集中 回答数: 0
物理 高校生

物理のエッセンス熱の問8について、mNaが1モルの分子の質量になるのがなぜなのか分かりません。単位的にもそうなるとは思えなかったのですが、分かった方は教えて下さると有難いですm(_ _)m

かはないはず) ひx2 = by²2=022 よって 72=30x2 ③,④より F=- Nmv² 3L よって P-E-Nmv²_Nmv² 3L3 P= L2 3 V この結果を状態方程式 PV = nRT= -RT と比べてみれば (PV=) Nmv²_N_RT =hty mv²-3. R.T A NA 2 NA 3 定数は平均に関係しないから、 ギーの平均値を表していることになる。 F N NA 気体の内部エネルギー 1/2mv1.2mに等しく,分子の運動エネル M ③ 分子の平均運動エネルギー 1/2mv=12/2 NT=12/2kT 3 R -mv². NA ちょっと一言 この式は重要。 温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また,分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。定数R/NA はんと書いてボルツマン定数とよんでい る。 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃の酸素の √v^² を求めよ。酸素の分子量を 32,気体定数を8J/mol・K とする。 RO-31XY NAJS WEDR 内部エネルギーU とは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ) では 3 RT=3 NRT="nRT 気体とよぶ)では U=Nx/1/2mv=N×012 NA 2 29 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例すること わかっている。 内部エネルギーは温度で決まる小

解決済み 回答数: 1