学年

教科

質問の種類

物理 高校生

(3)の問題 質量数とアボガドロ数を用いた計算のしかたがわかりません 僕のノートのように計算しては行けないのですか?

反応の前後で減少した量を GM とすると、 JM (反応) - 反応後の質量) AM= (26.9744+1,0087) -(23.9849+4.0015) =-3.3×10 u (2) (1) JMが負となったので、反応後の質量 leV=1.60×10-19Jなので, 4.92×10-13 1.60×10-19 指針 反応前後での質量の減少を⊿M とす ると, 4M2 のエネルギーが放出される。 (3) では, Uの原子数を求め, エネルギーを計算する。 (1) 反応前の質量の和は, 234.9935+1.0087=236.0022u 反応後の質量の和は, 139.8918+92.8930+3×1.0087=235.8109u =3.07 x 10°eV=3.07MeV 3.1 MeV のエネルギーが吸収された。 基本例題88 ウランの核分裂 ウランの原子核に中性子 in が衝突し, 次のような核分裂がおこった。 U÷n →→→→ ¹8Xe+Sr+3n 表には、各原子核と中性子の質量を示す。 1u=1.66×10-27kg, 真空中の光速を3.00×10°m/s, アボガドロ定数を6.02×1023/mol とする。 質量の減少は 236.0022-235.8109-0.1913 u (2) 反応によって減少した質量をkg に換算する。 AM = 0.1913×(1.66×10-27) = 3.175×10-28kg 基本問題 606,607,608,609 in 38Sr 1404 (1) この反応における質量の減少は何uか。 (2) Uの原子核1個あたりから放出されるエネルギーは何Jか。 (3) 1.00gのUがすべて核分裂をしたとき, 放出されるエネルギーは何Jか。 1.00 235 235T 1.0087 u 92.8930u 139.8918u 234.9935 u 放出されたエネルギーEは,E=⊿Mc² から . E=3.175×10-28 × ( 300×108) 2 = 2.857×10- ….. ① 2.86×10-1J (3) 1.00gの25Uの原子数は、質量数が235 な ので, x (6.02×1023) = 2.561×1021 求めるエネルギーE' は, ①の値から. E'=(2,857×10-1)×(2.561×1021) =7.316×10¹0 J 7.32×10¹0 J

回答募集中 回答数: 0
物理 高校生

この問題の(4)(5)で何故解説の図c、図dが示すようなa,bの長さが分かるのですか? 教えて頂けると嬉しいです

32. 〈ゴムひもに取りつけられた物体の運動〉 水平な台の上に質量mの物体Aを置き, 図のように自然の長さのゴムひもBを取り つけた。 ゴムひもの右の端を持って水平方向 にゆっくりと引くと,ゴムひもが自然の長さ からαだけ伸びたときに物体が動き始めた。 その瞬間にゴムひもを引くのをやめたところ, 物体ははじめの位置からだけ移動して止まった。 台と物体の間の静止摩擦係数をμ, 動摩 擦係数をμ',ゴムひもが自然の長さからy伸びたときの弾性力は,kを比例定数としてky とする。 重力加速度の大きさをg とする。 また, μμ' とする。 (1) 物体が動き始めたときのゴムひもの伸びα とμの関係を示せ。 (2) ゴムひもが1+αの長さに伸びたときにゴムひもに蓄えられている弾性エネルギーを求 めよ。 (3) 物体が止まるまでに摩擦力がした仕事を求めよ。 (4) 物体が止まったとき, ゴムひもがたるんでいたとする。 μとμ'の間にはどのような関係 があるか, a b を含まない不等式で示せ。 (5) 物体が止まったとき, ゴムひもが自然の長さよりも伸びていたとする。 このとき ゴムひ もにはエネルギーが蓄えられていることに注意して、移動距離6をm,g, k, μ, μ'′ を使 って表せ。 〔学習院大〕 A m x = 0 B 金沢大」 x=l

回答募集中 回答数: 0
物理 高校生

この問題pとΦとΘ使って良いと書いてないのですが 誤植ですか?

条件 していることを確かめよ。 (2) 0=30°において, (3) 0°30°の範囲内で角度を大きくしていく間, 反射された電子線が強くなるの (16. 福岡教育大改) は何回あるか。 線が物質中に入射し, コン プトン効果がおこって電子が散乱された。 図のように, 入射y線と散乱線の波長をそれぞれ入,X', エネル ギーをE,E' とし,散乱された電子の質量をm,運動 量をpとする。また,入射y線の方向に対する散乱角 を, y線と電子でそれぞれ0,とし, プランク定数 をh.光速をc とする。 次の各問に答えよ。 (1) 入射y線,散乱y線, 電子からなる系において,入射y線の入射方向とそれに直角 な方向について,それぞれ運動量保存の式を示せ。 入, i', h を用いて答えよ。 h (1-cose) と表される。このとき,散乱線の mc やや難 585. コンプトン効果 (2) 散乱y線の波長 入' は, i'=入+ エネルギーE'が,E' = E mc2 E 1+ -(1-cos) 入射線 A, E となることを示せ。 物質 散乱線 X. E 0 8 m.p (3) 散乱された電子のエネルギーが最大になる角6を求めよ。 (4) セシウム137Cs から発生するエネルギー 662keVァ線を入射させる。 (3)の条件 の場合,電子に与えられるエネルギーは何 keV か。 桁で求めよ。 mc² = 511keV とし,有効数字 2 (11. 慶應義塾大改) 例題49 ヒント 584 (2) 隣りあう2つの結晶面で反射する電子線の経路差は, 2dsin30°である。 585 (3) エネルギー保存の法則から、E'が最小のときに電子のエネルギーが最大となる。

未解決 回答数: 1
物理 高校生

ホイートストンブリッジです。(2)まではいいのですが(3)がどうしてもわからないです。 なぜ電流計が0だと(1)と電圧が同じになるんですか? あとの計算でV1=80×10^-2 としてますが、これは(1)と流れる電流が同じということですよね?したら(1)のようにキルヒホッフ... 続きを読む

必修 11. 電流と磁場, 荷電粒子の運動 基礎問 電流と磁場 Ⅰ. 図1のように,長い導線を水平に南北方向に張り,そ の真下の距離 10 [cm] のところに小さな磁針を置いて、 導線に電流を流した。このとき,磁針のN極は西に 45° 振れて静止したことから,この場所での地球の磁場の強 さの水平成分は 25 〔A/m〕 であることがわかった。 (1) 導線にはどの向きに電流を流したか。 (2) 流した電流は何 〔A〕 だったか。 (3g) 次に導線を取り除き、かわりにコイルの頭を南北方向と垂直になるよ うに1巻きの円形コイルを置き、その中心の磁場が0となるようにした い。 円形コイルの半径を20〔cm〕 とすると, コイルに流すべき電流の強 79 さは何 〔A〕か。 ⅡI. 図2のように、紙面に垂直な導線P, Qに同じ強さIの 直線電流が流れている。Pの電流は紙面の裏から表に向か う向きに,Qの電流はPと逆向きに流れている。導線P. Qからの距離がともに4の紙面上の点Xに生じる磁場の (福岡大改・愛媛大) 強さを求め、その向きを図示せよ。 I H=- (r: 電流からの距離) 2πr () 円形電流の中心の場合 北 H=- ( r円の半径) 2r 45 C 15+0=3 P 0 10cm 図1 XA a. 3. ●地磁気 地球は北極をS極,南極をN極 精講 とする大きな一つの磁石であり,地表には 地球による北向きの磁場が存在する。 これを地磁気という。 【参考】 磁気量 (磁極の強さ) をmとすると, 強さHの磁場 から磁極が受ける力の大きさFは,F=mH である。 ●電流がつくる磁場 電流がつくる磁場の強さは電流の強さに比例するが, そ の強さを与える式は電流の形状によって異なる。 電流Iがつくる磁場の強さを Hとすると 電流ⅠⅡ (i) 直線電流 ( 十分に長い) の場合 a 図2 H 磁場 (A) SLO TA a 1 Gir Q ルの内部の場合 ソレノイドコイ H=nl (n: 1 〔m〕 あたりの巻数) ●右ねじの法則 右ねじの進む向き ●京靴の向きにとると、右ねじを回す 向きが磁力線の向きを表す。この 磁力 磁力線の向きの接線方向が磁場の間 である。 磁場 クトル和である。 ●磁場の合成 複数の電流による磁場は、各電流がその場所につくる磁場のベ I. (1) 磁針の向きより, 合成磁場の向きは北向 真上から見た図 きから西へ45° 振れているので、 導線の電流が 45 つくる磁場は西向きである。 よって, 導線を流れる電流の向き は、右ねじの法則より, 北向きである。 (2) (1)より、導線の電流がつくる磁場の強さをH [A/m] とす ると, H=25 [A/m〕 である。 電流の強さをI〔A〕 とすると, I 2×0.10 よって,I=5=5×3.14≒16 [A] (3) 円形コイルの中心の磁場が、 地磁気と逆向きで、同じ大き H= -=25 さであればよい。 コイルに流す電流の強さをI' 〔A〕 とすると, I' VI I 2ла 磁場H I. (1) 北向き Ⅱ. 磁場の強さ: -25 よって, I'=10 [A] 2×0.20 TARS KAME I. 導線P, Q の電流がそれぞれ点Xにつくる磁場の強さを H, HQ とすると, I 2лα H Hp=Ho= 導線 P, Q の電流がつくる磁場の向きは右図となる。 磁場の強さが等しく, なす角が120° であることより,合成磁場 の向きは右図の太い矢印の向きである。 また, 合成磁場の強さ Hx は , Hp (または HQ) と正三角形をつくることより, (2) 16 〔A〕 I 向き 2ла' Hx=Hp= 【参考】 成分で求めると, Hx=Hpcos60°×2=He となる。 北 R÷Á÷AN….... (3) 10 (A) a の図 磁力線 .25 [A/m) 電流 磁場 H₂O H60060° Far-102043: H₂ 図 a Q 第4章 電気と磁気 流と磁場, 荷電粒子の運動 177

回答募集中 回答数: 0