学年

教科

質問の種類

物理 高校生

数1青チャートの問題で (2)です 任意の実数xってどういう意味ですか? 問題の意味が理解できません a=0のとき例えばx=0は成り立たないと解説の最初の方にありますがなんのことかわからないです

194 00000 基本 115 常に成り立つ不等式 (絶対不等式) (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k> 0 が成り立つよう な定数kの値の範囲を求めよ。 (2) 任意の実数x に対して, 不等式 ax2²-2√3x+a+2≦ 0 が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x) としたときの, y=f(x)のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数x に対してf(x)> 0 が成り立つのは, y=f(x)のグラフが常にX軸より上側 (v>0 の部分)に あるときである。 y=f(x)のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x)=0の判別式をDとする と, D<0 が条件となる。 D<0はkについての不等式になるから, それを解いてんの値の範囲を求める。 (2)(1)と同様に解くことができるが,単に「不等式」 とあるから.α=0の場合(2次 y=f(x) f(x)の値が常に正 a=0のとき、 y=f(x) の よって す の条件は, x軸と共有 ある。 2 める条件 であるか よって a<0と [補足] この例題 対不等式

解決済み 回答数: 1
物理 高校生

(2)の解説 方程式の文字の値をすり替えるって、、、方程式のルール的に完全アウトじゃないですか? これなんでOKなんですか?

56 基本例題 30 絶対値と不等式 次の不等式を証明せよ。 (1) |a+b|≦|a|+|6| (2) |a|-|6|≦|a+bl 指針 (1) 前ページの例題29と同様に(差の式)≧0 は示しにくい。 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0のとき の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明しても よい。 (2)(31)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 [2] 方法をまねる la+b≧(lal+|6|)² (3) la+b+cl≦la|+|6|+|el ●基本 29 重要 31 A≧B⇔A'≧B'⇔A'-B'≧0 (1) (lal+ b)²-la+b|²=a²+2|a||b|+6²-(a²+2ab+6²) |◄|A³=A² 解答 =2(labl-ab)≧0 |ab|=|a||6| ...... よって 00000 よって la+b≧0, lal +6 ≧0 から la+6|≦|a|+|6| この確認を忘れずに。 別解] 一般に,|a|≦a≦|a|-|6|≦b≦|6| が成り立つ。 | A≧A, |A|≧-A この不等式の辺々を加えて から-|A|A|A| -(|a|+|6|)≦a+b≦la|+|6| したがって la+b|≦|a|+|6| (2) (1) の不等式でαの代わりにα+6, 6 の代わりに - b とおくと |(a+b)+(−b)| ≤|a+b|+|−b| よって |a|≦la+6|+|6| ゆえに |a|-|6|≦la+6| [別解 [1] [a|-|6|<0のとき a+b≧0であるから,|a|-|6|<la+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b-(|a|-|6|)²=a²+2ab+b²-(α²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)≦|a+b² |a|-|6|≧0,|a+b≧0であるから |a|-|6|≦la+b1 [1], [2] から |a|-|6|≦|a+b| (3) (1) の不等式での代わりにb+c とおくと la+b+c)[≦la|+|b+cl la+b+cl≦|a|+|6|+|c| ≦|a|+|6|+|c| -B≤A≤B ⇔|A|SB ズーム UP 参照。 <|a|-|6|<0≦la+bl [2] の場合は, (2) の左 辺, 右辺は0以上であ るから, 右辺20 を示す方

解決済み 回答数: 1
物理 高校生

青線で囲った部分、n+1じゃなくて、nじゃないですか? 最高次の項をnだと置いているから、a(x+1)∧n-ax∧nじゃないんですか? ここがnだとどういけないんでしょう

42 重要 例題 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x) が2次式とわかっていれば, f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x) は n次式であるとして, f(x)=ax+bx-1+...... (a=0, n ≧1) とおいて 進める。 f(x+1)f(x) の最高次の項はどうなるかを調べ, 右辺2x と比較するこ とで次数 n と係数 αを求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=1 f(x)=c (cは定数) とすると, f(0) =1から 解答 これはf(x+1)f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+..... (α= 0, n ≧1)(*) とす ると f(x+1)f(x) =a(x+1)"+6(x+1)"'+......-(ax+bx-1+......) =anx-1+g(x) ただし,g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して ・①, n-1=1 ...... ( an=2...... ②② よって 2x+6+1=2x この等式はxについての恒等式であるから b+1=0 すなわち b=-1 したがって f(x)=x-x+1 基本15 この場合は, (*) に含ま れないため, 別に考えて いる。 ◄(x+1)" 練習 f(x) は最高次の係数が1である多項式であり 定 ④ 21 f(x2)={f(x)-ax-b}(x²-x+2) が成り立 びα bの値を求めよ。 ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)f(x)=(x+1)+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nC1x"-1+nC2.xn-2+... のうち、 n+1/ a(x+1)" -αx" の最高 次の項は anx-1 で, 残 りの項はn-2次以下と なる。 anxn-1と2x の次数と 係数を比較。 POINT 次数が不明の多項式は, 次と仮定して進め 係数比較法。 有効 し、常 5 基本事 12 3 2

未解決 回答数: 1
物理 高校生

これの(3)を教えて頂けませんか🙏 2枚目の写真が答えなのですが、解説を読んでもよくわかりません、、、

6 [2014 東京大] 【35分】 図1に示すように、水平から角度を なすなめらかな斜面の下端に, ばね定数 んのばねの一端が固定されている。斜面 は点Aで水平面と交わっており, ばねの 他端は自然の長さのとき点Aの位置にあ るものとする。 図2に示すように,質量 mの小球をばねに押しつけ, 斜面にそっ て距離xだけばねを縮めてから静かに手 をはなす。 その後の小球の運動について, 次の問いに答えよ。 ただし, 重力加速度 の大きさをgとする。 また, 小球の大き さとばねの質量は無視してよい。 (1) x=x のとき, 手をはなしても小球 は静止したままであった。 このときの x を求めよ。 (2) 手をはなしたのち, 小球が斜面から 飛び出し水平面に投げ出されるための の条件を, k, m, g, 0 を用いて表せ。 「ひゃん。 (3) x=3x) のとき, 小球が動きだしてから点Aに達するまでの時間を求めよ。 次に,(2) の条件が成立し小球が投げ出された後の運動を考える。 小球は点Aから速さ で投げ出されたのち, 水平距離s だけ離れたところに落下する。 点Aでの速さが一定 の場合は,0=45°のとき落下までの水平距離が最大になることが知られているが,今回 の場合は,0によって”が変わるため, s が最大となる条件は異なる可能性がある。 次の 問いに答えよ。 なお,必要であれば、表1の三角関数表を計算に利用してよい。 S 表 1 (4) vをx,k, m, g, 0 を用いて表し、 xが一定 のとき, sが最大となる 0は45°より大きいか小 さいか答えよ。 (5) s をx,k, m, g, 0 を用いて表せ。 0 sin 0 cos o 0 sin 0 cos o x m A 図1 A 図2 35° 10° 15° 20° 25° 30° 40° 0.17 0.26 0.34 0.42 0.50 0.57 0.64 0.71 0.98 0.97 0.94 0.91 0.87 0.82 0.77 0.71 45° 50° 0.77 0.64 20.57 20.50 0.42 0.34 55° 60° 65° 70° 75° 80° 0.82 20.87 0.91 20.94 20.97 0.98 0.26 0.17 2mg のとき,表 (6) x=- k に示した角度の中から, sが最も大きくなる 0 を選んで答えよ。 (7) x を大きくしていくと, s が最大となる 0 は何度に近づくか。 表に示した角度の中 から選んで答えよ。

解決済み 回答数: 1
1/4