学年

教科

質問の種類

物理 高校生

(2)のX(t)=0ってどっから出てきたんですか?

A 1. 〈斜方投射と相対運動〉 6/16 一定の速さ Voで鉛直方向上向きに上昇している気球がある。 気球に乗っている人の手の 高さが地上から高さんの所で,この気球から見て小物体を初速度の大きさで手から水平 に投げた。小物体が投げられた時刻をt=0s 投げた手の真下の地表を原点とし,鉛直方 向上向きを正としてy軸をとり、水平方向で小物体が投げられた向きを正としてx軸をとり, 重力加速度の大きさを」とし、気球は回転しないものとし、空気抵抗は無視できるとする。 (1)地表から見た, 小物体の位置のx成分 x(t) を求めよ。 (2) 気球に乗っている人は小物体を投げた手の位置を変えずに小物体を観察する。その手の 位置を基準(新たな原点 0))として小物体を見た場合の, 小物体の位置のx成分x(t) を求 めよ。 (3)地表から見た, 小物体の位置のy成分y(t) を求めよ。 (4) 気球に乗っている人が小物体を投げた手の位置を基準(原点O')として鉛直方向上向きを 正とする新たなy'′ 座標軸を考える。 その座標軸 y' は気球に乗っている人には静止してい る。この場合の, その座標軸y' を用いて表した小物体の位置のy′成分y' (t) を求めよ。 (5)地上から見てこの小物体が最高点に達した高さを、気球に乗っている人が見たときにど のようになるか。 (4)で用いたy' 座標軸の位置 y' としてその位置を表せ。

回答募集中 回答数: 0
物理 高校生

この問題の(1)で、なぜTではなく2Tになるのかよくわかりません… 人が引いている力の反作用でTがあるのは分かるのですが、そもそも人が作用で紐を引っ張っているので相殺されるような気がしてしまいます…

発展例題 7 力のつりあい 展開 81 重さW 〔N〕の人が, 重さw [N] の台の上にのり、図のように、 滑車を使って台といっしょに自分自身をもち上げようとしてい る。 W>wとして, 次の各問に答えよ。 (1) 人がひもを大きさ T 〔N〕の力で引くとき, 台が地面から 受ける垂直抗力の大きさNは何Nか。 (2) 台が地面からはなれるには, Tを何Nよりも大きくすれ ばよいか。 指針 (1) 人がひもをT [N]で引くと、作 用反作用の法則から,人はひもから同じ大き さT(N)の力で引き返される。 人と台にはたら く力を描き、 つりあいの式を立てる。 (2) 台が地面からはなれるとき, 垂直抗力Nが 0 になる。 ■解説 (1) 人と台がお よぼしあう力の 大きさをN' と するとそれぞ れ図のような力 T W ¥1 を受ける。 人が受ける力台が受ける力 W[N] 地面 [N] 人が受ける力のつりあいから、 T+N'-W=0 ... ① また、台が受ける力のつりあいから、 T+N-N'-w=0 ② 式① ② の々を足しあわせると、 2T+N-(W+1)=0 NW+w-2T(N) な (2) 台が地面からはなれるとき、 N=0 となる (1)の結果を用いると、 0-W+w-2T W+w

回答募集中 回答数: 0
物理 高校生

背理法による証明 k2乗は整数であるから C の2乗は4の倍数なのに M 2乗+ N 2乗- m - n は整数であるから a 2乗+ b 2乗は4の倍数ではないがわからないので教えてください

例題 4 背理法による証明 第2章 集合と命題 ★★★★~ la, b, c は a2+b2=c2 を満たす自然数とする。 このとき, a, bの少なくとも一方は偶数であること 背理法を用いて示せ。 考え方 結論を否定して矛盾を導く 結論が成り立たないと仮定する。 (結論を否定する) ⇒ 「α,bの少なくとも一方は偶数」の否定は 「a, bがともに奇数」 a+b=c の両辺について, 4の倍数であるかどうかを調べる。 解答 a, b がともに奇数であると仮定する。 [類 岐阜聖徳学園大 ポイント ① 結論を否定 ② 右辺を調べる このとき,a2,2は奇数であるから,c=d'+62 は偶数である。 左辺を調べる ③ 矛盾を導く 練習 4 よって, cも偶数であるから, cは自然数kを用いてc=2k と表される。 ゆえに,c2=(2k)²=4k2となり,kは整数であるから,2は4の倍数である。 一方,奇数 α,bは自然数nを用いて,a=2m-1,b=2n-1 と表される。 このとき,a+b2=(2m-1)+(2n-1)²=4(m²+n-m-n) +2となり、 m²+m²-m-nは整数であるから, a +62は4の倍数ではない。 ゆえに,a+b2=c2において,右辺は4の倍数であるが, 左辺は4の倍数でな から, 矛盾する。 したがって, a, bの少なくとも一方は偶数である。 [終] (1) 正の整数xが3の倍数ではないとき, x2を3で割った余りは1であることを示 (2)x,y,z は x2+y'=z2 を満たす正の整数とする。このとき,x,yの少なく 3の倍数であることを, 背理法を用いて示せ。 〔類

未解決 回答数: 1
1/288