学年

教科

質問の種類

物理 高校生

(1)についておしえてください。 まずv=atは初速度が0だからV=V0+ atからV0をないものとしてるということですか? そして7秒から9秒の部分を解説のV=atで計算すると−8になっているけどなぜグラフは0になるんですか?

14 第1章 物体の運動 発展例題 5 等加速度直線運動のグラフ x軸上を運動する物体が時刻t=0s に原点 0 から動き出し, その後の加速度 α 〔m/s2] が図の ように変化した。 x軸の正の向きを速度 加速度 の正の向きとする。 α [m/s2] 2.0 7.0 9.0 0 4.0 t(s) (1)物体の速度v [m/s] と時刻t[s] の関係を表す -4.0 グラフをかけ。 (2)物体の位置 x [m] と時刻t[s]の関係を表すグラフをかけ。 考え方 (2) x-tグラフの形は,αの符号によって変わる。 ・α< 0:上に凸の放物線 ・a>0:下に凸の放物線 ・α=0:傾きぃの直線 (等速直線運動) 解答 (1) t=4.0s での速度v [m/s] は,(1) 補足 v=at=2.0×4.0=8.0m/s v↑ [m/s] (加速度)=(v-tグラフの傾き)から, 18.0 v-tグラフは右の図。 (2)(移動距離) (v-tグラフの面積) から位置 x[m〕を求めると ・t=4.0s:x= 1/2×4.0×8.0=16m ・t=7.0s:x=16+3.0×8.0=40m 0+1/2×2 ・t=9.0s:x=40+ -x2.0x8.0=48 m t(s) 4.07.09.0 XA x=vot+ +at² (vo>0) のグラフはαの正負に よって、次のようになる。 ・a> 傾き ひ x (2) 傾き No x4〔m〕 48 また, x-tグラフの形は, 40 • a≤0 ・t=0~4.0s :下に凸の放物線 x 16 傾き Do 傾き v ・t=4.0~7.0s 傾き 8.0m/s の直線 t(s) 0 4.0 7.09.0 ・t=7.0~9.0s:上に凸の放物線 X である。 以上から, x-tグラフは右上の図。 ACCESS | 3| 発展問題 ・頻出重要 t

解決済み 回答数: 1
物理 高校生

(2)の緑のマーカのところで、急にsをかけたのって①のpsを使うためですか? そういう発想ってなかなか思いつかなくないですか?慣れですか?

114 第2編■熱と気体 リードC 基本例題 43 気体の状態方程式 239,240 解説動画 なめらかに動く質量 M [kg] のピストンをそなえた底面積 S[m²] の円筒 形の容器に, 1molの理想気体が入っている。 重力加速度の大きさをg 〔m/s'], 大 気圧を po [Pa], 気体定数を R [J/(mol K)] とする。 (1) 気体の温度が T[K] のとき,容器の底からピストンまでの高さ lはいくらか。 Do 1 mol 質量 M (2)加熱して気体の温度を To [K] からT[K] にした。 気体の体積の 増加 ⊿V はいくらか。 底面積 S 指針 ピストンが自由に移動できるから、気体の圧力』は一定である。 解答 (1) 気体の圧力を [Pa] とすると, カ ③式②式より Pos のつりあいより Post pAV=R(T-To) pS-poS-Mg=0 pS= pos+Mg 「pV=nRT」 より p(Slo)=RTo ①式を代入して (poS+Mg)lo=RT 4V= ......① R(T-To) T Þ Mg lo Mg PS ps __RS(T-To) To T DS RS(T-To) = [m3] RTo よってl= [m] poS+ Mg (2) 加熱の前後で 「pV =nRT」 を立てて 前:pSl)=RT 後: p (Slo+⊿V)=RT ......② ・③ poS+ Mg [参考] 圧力が一定のとき, 体積の変化量⊿V と温度の変化量4Tの間には、 「AV=nRAT」 の関係がある。 この関 係を用いて解いてもよい。

解決済み 回答数: 1
1/138