学年

教科

質問の種類

数学 高校生

(1)の数列bnの式で、なぜ(n-1)をかけるかわかりません。 (1)、(2)どちらも数列bnの式の求め方がわかりません(bn=an+1-anまではわかる)教えて欲しいです🙇🏻‍♀️

380 基本 例題 19 階差数列と一般項 次の数列{a} の一般項 αn を求めよ。 (1)8, 15, 24, 35, 48, (2) 5, 7, 11, 19, 35, CHART & SOLUTION {a} の一般項 (bn=an+1-an とする) わからなければ,階差数列 {bm} を調べる p.375 基本事項.Gha n-1 n≧2のときabk k=1 ← 初項 (n=1の場合) は特別扱い。 解答で公式を使うときは n≧2 を忘れないように。 また, n=1 ように! (1) 階差数列は 7, 9, 11, 13, 公差2の等差数列 (2)階差数列は 2, 4, 8, 16, 公比2の等比数列 解答 その場合の確認を忘れ 数列 {an} の階差数列を {bm} とする。 (1) 数列{bm} は, 7, 9, 11, 13, 公差2の等差数列である。 ・・であるから, 初項 7, 8 15 24 35 差 : 791113 ゆえに bn=7+(n-1)・2=2n+5 よって, n≧2のとき n-1 k=1 an=a1+(2k+5)=8+2k+5 5)=8+2 n-1 n-1 k=1 k=1 (+) =8+2・ 1/12(n-1)n+5(n-1)=n²+4n+3 また,初項は α = 8 であるから,上の式は n=1のとき ☆ 「n≧2 のとき」とい 条件を忘れないよう k=(n-1)- -1 k=1 2 初項(n=1の場合: 特別扱い。 にも成り立つ。 以上により, 一般項 an は an=n2+4n+3 (2) 数列{bm} は, 2, 4, 8, 16, 比2の等比数列である。 ゆえに よって, n≧2 のとき であるから, 初項 2, 公 bn=2.2"-1=2" 5 7 11 19 35 WW 差 : 2 4 8 16 ← n≧2のとき」とい n-1 an=1+2=5+ 2(21-1-1) 条件を忘れないよう -=2"+3 k=1 2-1 また,初項は α = 5 であるから,上の式は n=1のとき ←初項(n=1の場合 にも成り立つ。 以上により,一般項an は an=2"+3 特別扱い。 基 C

未解決 回答数: 1
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

(1)と(2)をわかりやすく教えてください

例題 126 205 0000 は定数とする。 0≦02 のとき, 方程式 sin20-sin0=aについて この方程式が解をもつためのαのとりうる値の範囲を求めよ。 この方程式の解の個数をαの値によって場合分けして求めよ。 SMART A SOLUTION & 方程式f(0)αの解 3つのグラフ y=f(0), y=aの共有点 ink (002) の解の個数 k=±1で場合分け。 SO の個数はk =±1のとき1個;-1<k<1のとき2個 ; k<-1,1<kのとき0個 cod sin20-sin-a 基本125 I- ① とする。 COT 4章 sind=t とおくと t²-t=a (2) ただし, 002 から0 <-11 16 (3) y したがって、方程式 ①が解をもつための条件は, 方程式 ②が③ の範囲の解をもつことである。 y=f-t [1]→ 2 y=a 1 方程式 ②の実数解は、v=-= (-1/2-1の [2]→ 4 グラフと直線 y=αの共有点のt座標であるから, [3] 1 ¦-1 021 1 右の図より ≤a≤2 [4]- [5] 三角関数のグラフと応用 20 & 0=n+200-ies 201 012 (1) の2つの関数のグラフの共有点の t座標に注目すると, 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t=-1 から 1個 全 1 [2] 0<α <2 のとき, -1 << 0 から 2個 () [4]. + [3] -[5] [3] α=0 のとき, t=0, 1 から 3個 [4] 21 -[3] 1-1 <<0 のとき,O<< 21/21/12/11 10 π <t<1 [2]→ の範囲に共有点がそれぞれ1個ずつあり、そ [1]+/-] t=sin 0 れぞれ2個ずつの解をもつから 4個 [3] a=-12 のとき,t=1/23 から 2個 [6] a<-¼¼, 2 <αのとき 0個 aot 201

未解決 回答数: 1
数学 高校生

相加平均相乗平均の問題です 最初になにをしてるんですか?

(7) 件の確認が必要である平均)(相乗平均)を利用。 人にように定数を補い, (相加平均) ≧ (相乗平均)を利用。 CHART & SOLUTION 基本 積が定数である正の数の和の最小値 (相加平均) ≧ (相乗平均)を利用 吉日と白の大小関係 2 から a+bの最小値を求めることができる。 CH 式の 2式 べる を求 基本 例題 31 相加平均・相乗平均を利用する最小値 (1)x>0 のとき, x+-の最小値を求めよ。 9 証明せよ。また、毎号 基本 (2)x>0 のとき, x+ 9 x+2 の最小値を求めよ。 0< p.42 基本事項 5. a+bz√ab において, ab=k(一定)の関係が成り立 → 解答 (1)x>0, 20であるから,相加平均と相乗平均の大小関 ↓ 相加率) 9 係により 9 相加平均と相乗 大小関係を利用する この x+2 X・ =2.3=6 XC x 解答 等号が成り立つのはx=- 9 明 すなわち x=3のとき。 9 x ← x=- よって、x=3で最小値6をとる。 を明示する。 =から=9 x x>0 であるからょ a+ 0<d よっ 20 (2)x+ 9 x+2 =x+2+ 9 x+2 また -2 x>0より x+2>0, 9 x+2 ->0 であるから, 相加平均と相 2つの項の積が足 なるように,x+20 を作る。 した であ [1] 乗平均の大小関係により [2] x+2+ ≧2. x+2 =2.3=6 x+2 x+2 ゆえに9x+29_2 x+2 -2≧6-2=4式の値が4になるよ M 値が存在する [3] 等号が成り立つのは x+2= 9 のとき。 x+2 このとき (x+2)2=9 とを必ず確認する。 立号成立は 9 した x+2>0 であるから x+2=3 (2) x>1 のとき, x+ 1 の最小値を求めよ。 x-1 したがって, x=1で最小値4をとる。のときされ PRACTICE 31実の方 3 b,c,dは正の数と (1) x>0 のとき, x+ 16 次の不等式が成り立つことを証明せよめ の最小値を求めよ。 北平米日(日) ORA 2- 5-0 ゆえに x+2= x+2 96 x=1 かつ x+2+- x+2 2(x+2)=6 として求めてもよい

未解決 回答数: 0
数学 高校生

最後のd^2からdを考える際、X=3はそのままなのに、18は3‪√‬2になっているのは何故ですか?

18 基本 例題 67 最大 座標平面上で,点Pは原点Oを出発して, x軸上を毎秒1の速さで点 (6,0 0まで進む。この間にP, Q間の距離が最小となるのは出発してから何秒後 まで進み,点Qは点Pと同時に点 ( 0, -6) を出発して,毎秒1の速さで原点 か。また,その最小の距離を求めよ。 CHART & SOLUTION 基本 t秒後のP, Q間の距離をd とすると,三平方の定理からd=f(t) の形になる。ここで f(x)の最大・最小 平方したf(x) の最大・最小を考える d0 であるから,d=f(t)が最小のときdも最小となる。 解答 0≤1≤6 出発してからt秒後のP, Q 間の距 離をdとする。 P, Qは6秒後にそ れぞれ点 (6,0), (0, 0)に達するか ・① ら YA 6 x このとき, OP=t, OQ=6-t であ るから,三平方の定理により d2=12+(6-t)2 =2t2-12t+36 =2(t-3)2+18 tのとりうる値の範囲。 点Qのy座標は t-6 基本形に変形。 ① において, d は t=3 で最小値18 をとる。 d0 であるから,dが最小となるときdも最小となる。 よって, 3秒後にP,Q間の距離は最小になり,最小の距離は √18=3√2 軸t=3は①の範囲内。 この断りは重要! INFORMATION dの大小はdの大小から 例題では,d=√2+62 の根号内の a2+62 を取り出して まずその最小値を求めている。 これはd>0でd が変化す るなら, dが最小のときも最小になるからである。 右のグラフから, 大B2 (x≥0) d² A2 A≥0, B≥0, d≥0 * Ad≤B A²≤d²≤B² つまり,d≧0 のときdの大小はdの大小と一致する。 0 Ad B X 小 大

未解決 回答数: 0
数学 高校生

数学 答えと違うやり方でやった(二枚目)のですが、良いのでしょうか?k=1のときを考えてないからダメだと思いますが。。

要 例題 43 虚数を係数とする 2次方程式 00000] xの方程式(1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 (x-6)=(+x)([+x) (£) ひとすると 基本 38 73 判別式は係数が実数のときに限る DOから求めようとするのは完全な誤り(下の INFORMATION 参照)。(ど)。 実数解をαとすると (1+i)μ2+(k+i)a+3+3ki=0 RBORONE ns-e+x(S-D) (1) 2章 6 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により (1) a=0, 6=0 α, kの連立方程式が得られる。 る。 .... 解答 NEDOZEURS-50-DE) to (S) 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (a2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 a+bi=0 の形に整理。 α kは実数であるから, a2+ka+3, a2+α+3k も実数。この断り書きは重要。 よって ①② から ゆえに よって Q2+ka+3=0 _Q2+α+3k=0 ...... 2 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 複素数の相等。 ← α を消去。 infk を消去すると k=1 または α=30= (L-n) + α-22-9=0 が得られ, [1] k=1のとき ① ② はともに α2+α+3=0 となる。 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 これを満たす実数 αは存在しないから、不適 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 RS ←D=12-4・1・3=-11<0 ①:32+3k+3 = 0 ②:32+3+3k=0 [1] [2] から求めるkの値はk=-46 実数解は x=3 2次方程式の解と判別式 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b c が実数のときに限る。 例えば, α=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix'+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° 0-6040-0 の方程式 (1+i)x²+(k-i)x-(k-1+2)=0 実数解をもつ #th to a litt

未解決 回答数: 0
数学 高校生

「」の部分がわかりません。どなたか教えてください!

000 求めよ。 重要70 重要 例題 102 連立不等式が整数解をもつ条件 xについての不等式 x 2-(a+1)x+a < 0,3x²+2x-1>0 を同時に満たす 整数xがちょうど3つ存在するような定数αの値の範囲を求めよ。 [摂南大 ] 00000 155 FE 基本 31.91 重要 100 CHART • SOLUTION 連立不等式 数直線を利用 不等式の左辺は,両者とも因数分解できる。 甲 分けて解を求める。 前者では文字αを係数に含むから,重要例題 100 と同様, αの値によって場合を F 解の共通範囲に含まれる整数値の考察には数直線の利用が有効である。・・・・ 解答 3章 一残る文字 る yの条件 x2-(a+1)x+a<0 から (x-a)(x-1)<0 <-1 -a→-a 11 よって 1 a -(a+1) a <1 のとき α <x<1 a=1のとき (x-1)2<0 から 解なし (x-1)2は常に 0 以上 Ex≦1)にお 2次不等式 1 <α のとき 1 <x<a 3x2+2x-1>0 から (x+1)(3x-1)>00 O よって x<-1, <a 1 <x 2 3 3 2 3-2 23 ① 1/1 <x<1には整数は含 3 まれない。 x 3 ①②を同時に満たす整数xがちょうど3つ存在するのは a <1 または α > 1 のときである。 [1] a <1 のとき 右の図から,a<x<-1 の範囲 の整数が-2-3, -4であれ ばよい。 -5≤a<-4 a -4-3-2-101 +5 ◆α=-5 のとき,① は -5<x<1 となり x=-5 が含まれず条件 を満たす。 α=-4 のとき, ① は -4<x<1 となり x=-4 が含まれず条件 を満たさない。 (p.55 ズーム UP 参照。) 16 よって [2] α>1のとき されてい よって ① 右の図から、1<x<αの範囲の 整数が 2 3 4 であればよい。 4<a≦5 -2- (1) ・最小値 以上から -5≦a<-44 <a≦5 -1 0 1 2 3 4 13 直は示し う。 PRACTICE・・・ 102 ④ (1)不等式 2x2-3x-5>0 を解け。 (2)(1)の不等式を満たし、同時に,不等式 x2+(a-3)x-2a+2<0 を満たすxの整 数値がただ1つであるように、定数αの条件を定めよ。 [[成城大]

未解決 回答数: 1
数学 高校生

マーカーの部分を教えてください

08 基本 例題 65 最大・最小の文章題 (2) 0000 座標平面上で、点Pは原点Oを出発して、x軸上を毎秒1の速さで点(6 まで進み、点Qは点Pと同時に点(一般)を出発して、毎秒1の速さで 0まで進む。この間にP,Q間の距離が最小となるのは出発してから何 か。 また、その最小の距離を求めよ。 CHART SOLUTION 解答 ✓f(x) の最大・最小はf(x)の最大・最小を考える 基本 t秒後のP,Q間の距離をd とすると, 三平方の定理からd=f(t) の形にな る。ここでd> 0 であるから,d=f(t)が最小のときdも最小となる。 出発してからt秒後のP, Q 間の距離 を dとする。 P, Qは6秒後にそれぞ れ点 (6,0,0,0)に達するから 0≤t≤6 ...... ① このとき, OP=t, OQ=6-t である 6- TUAN JS x ◆ tのとりうる値の範囲 点Qのy座標は t-6 から, 三平方の定理により -6 d=t+(6-t)2=2t-12t+36 =2(t-3)2+18 よって、①の範囲の tについて, d2 は t=3で最小値18 をと る。 d> 0 であるから,このときも最小となる。 ゆえに、3秒後にP, Q間の距離は最小になり、 最小の距離は 18=3√2 である。 ◆軸t=3は①の範囲内 この断りは重要! 81-38 INFORMATIONdの大小はdの大小から らdが最小のときも最小に 右のグラフから ずその最小値を求めている。これはd>0でdが恋 例題では,d=√2+62の根号内のα+62 を取り出して,ま y Lv=5

未解決 回答数: 1
数学 高校生

(2)番についてです。6≦2a+5<7でなく6<2a+5≦7になるのはなぜですか?

54 基本 例題 31 1次不等式の整数解 00000 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ (1) 不等式 6x+8(4-x) 5 を満たす2桁の自然数xをすべて求めよ。 るとき、定数αの値の範囲を求めよ。 CHART SOLUTION 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1)不等式の解で、2桁の自然数であるものを求める。 基本で (2)不等式の解が、x<A の形となる。ここで,x<4を満たす最大の整数が6 であるということは, x=6 は x<A を満たすが, x=7 は x<A を満たさないということ。これを図 に示すと右のようになる。 A ズーム UP 不等 問題 m, nh max 例 (1) 6x+8(4-x)>5から ゆえにx2=13 -2x-27 2桁 -=13.5 は2桁の自然数であるから 14 10≤x≤13 10 11 12 13 13.5 x よって x=10, 11, 12, 13 (2) 5(x-1)<2(2x+α) から x<2a+5 ◆展開して整理。 ◆不等号の向きが変わる。 ◆解の吟味。 $3000 S 例 [1] 2 ① ◆展開して整理。 ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≤7 のときである。 1<2a≤2 よって 1/12kas1 3 _RACTICE... 31 ③ 1) 不等式 x+ 2) 不等式 5(m 15 3 ① 6/2a+5<7 とか (6≦2a+5≦7 などとい 6 2a+57 x ないように等号の有無 に注意する。 注意 2 5-2 2 を満たす ①を満たす最大の整数 JO $50 > ◆α=1 のとき, 不等式は <7で、条件を満たす a = 1/2 のとき,不等式 $30 s> p <6で条件を満たさ ない。 ない」と答える 34 (2)-[0] 注意

未解決 回答数: 1
1/48