数学
高校生

(1)と(2)をわかりやすく教えてください

例題 126 205 0000 は定数とする。 0≦02 のとき, 方程式 sin20-sin0=aについて この方程式が解をもつためのαのとりうる値の範囲を求めよ。 この方程式の解の個数をαの値によって場合分けして求めよ。 SMART A SOLUTION & 方程式f(0)αの解 3つのグラフ y=f(0), y=aの共有点 ink (002) の解の個数 k=±1で場合分け。 SO の個数はk =±1のとき1個;-1<k<1のとき2個 ; k<-1,1<kのとき0個 cod sin20-sin-a 基本125 I- ① とする。 COT 4章 sind=t とおくと t²-t=a (2) ただし, 002 から0 <-11 16 (3) y したがって、方程式 ①が解をもつための条件は, 方程式 ②が③ の範囲の解をもつことである。 y=f-t [1]→ 2 y=a 1 方程式 ②の実数解は、v=-= (-1/2-1の [2]→ 4 グラフと直線 y=αの共有点のt座標であるから, [3] 1 ¦-1 021 1 右の図より ≤a≤2 [4]- [5] 三角関数のグラフと応用 20 & 0=n+200-ies 201 012 (1) の2つの関数のグラフの共有点の t座標に注目すると, 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t=-1 から 1個 全 1 [2] 0<α <2 のとき, -1 << 0 から 2個 () [4]. + [3] -[5] [3] α=0 のとき, t=0, 1 から 3個 [4] 21 -[3] 1-1 <<0 のとき,O<< 21/21/12/11 10 π <t<1 [2]→ の範囲に共有点がそれぞれ1個ずつあり、そ [1]+/-] t=sin 0 れぞれ2個ずつの解をもつから 4個 [3] a=-12 のとき,t=1/23 から 2個 [6] a<-¼¼, 2 <αのとき 0個 aot 201
三角方程式の解の個数

回答

疑問は解決しましたか?