学年

教科

質問の種類

数学 高校生

0<=t<=1とはどういうことですか、教えてください。

例題 131 三角 00180°において、方程式 2cos°0-5sin0 +1=0を満たす0の他 Joies 100 を求めよ。 思考プロセス 変数を減らす 一方を消去 sin と cose sin0 (または cos0 ) だけの方程式 既知の問題に帰着 int とおく で tの方程式 を含む方程式 /sin'0+cos'0=1 置き換えたもの 値の範囲に注意 の利用 Action 三角比の2乗を含む式は、1つの三角比で表せ を利用せよ RoAction 文字を置き換えたときは、その文字のとり得る値の範囲を考えよ 例題76 扇 cos20=1-sin0 であるから,与式は19歳与えられた方程式の1次 2 (1-sin20)-5sin0+1 = 0 2sin0+5sin0-3 = 0 の項が sind であるから、 sin0 だけの式にする。 ... 1 ここで,sin0 = t とおくと,0°≧≦180°より心agoioad 0 ≤1 ≤1 方程式 ① は 2t2+5t-3=0 (t+3)(2t-1)= 0 1 よって t = -3, 2 置き換えた文字のとり 得る値の範囲に注意する。 Onia d 3 → 6 1 0≦t1であるから t= 1-2 031 01 YA sin0 = -3 を満たす角 1 130 すなわち sin - 1 12 2 ( は存在しない。 2 P したがって, 求める 0 は 0 = 30°,150° 単位円上で座標が 1/2 1 x となる点は,図の2点P, P'である。 05 Point... sin0, cost の2乗を含む方程式の解法の手順 ①sin°0 + cos 0 = 1 を用いて sind (または cose) だけの方程式をつくる。 (2) sint (または coset) とおいて, tの2次方程式をつくる ③置き換えた文字のとり得る値の範囲を求める (4 0° 0≦sin≦1 より 180°のとき, (または1 ≦ cosd ≦1 より - ③の範囲に注意して②のもの方程式を解く。 単位円を用いて,の値を求める 0 st≤1 TO

未解決 回答数: 0
数学 高校生

イの式のTの2乗の式がわかりません

精講 BU (1)のとき、f(x)=√ 小値を求めよ. 7 π 22 10 (i)は,2sin 12 を計算してもよい。この場合は,加法定理を利用 =√3 cosx+sinx の最大値、 注 最 (- 7 します。 (01/22) 九 π= 3 +など) について, 7 (2)/y=3sin.rcos.resin.z+2cos しょう. 7)t=sinzeos.』 とおくとき, tのとりうる値の範囲を求め よ (イ)yをt の式で表せ. -π (i)は,2sin を計算した方が早いです。 (2) (7) t=sinx-cosx=/2sinx− (ウ)yの最大値、最小値を求めよ、 1 (1) sin.x=t (または, cos.=t) とおいてもtで表すことがで ません。合成して,ェを1か所にまとめましょう。 (2)IAの72 で学びましたが,ここで,もう一度復習しておき/ sing, COSIの和差積は, sin' x+cos2x=1 を用いると、つなぐことができる. π だから、 4 sin(x-4) = 1/2) .. -1≤t≤1 (イ) t2=1-2sinxcosx だから =1/28 (1-12) 3sinxcosx=- v=122 (1-1-2t=120-2t+2/27 y= (ウ) y=- 3 (1 + 2)² + 1/32 (-15151) 2 この程度の合成は, すぐに結果がだせる まで練習すること 41 1. √2 0 √2 y 66 4 4 解答 (1)f(x)=2sin.zcos/+cosr*sin 7 =2sin\r 2sin(x/4-5) 3 setsだから。 (i) 最大値 3 + 1/2 = 1/24 すなわち、x=2のとき (Ⅱ) 最小値 九 x+- 7 3 T. ++ 2 2 3 6 1 右のグラフより 最大値 13 6' 最小値 2 合成する 7 12 10 ポイント 合成によって, 2か所にばらまかれている変数が1か 所に集まる 12 演習問題 60 y=cosx-2sinxcosx+3sinx (0≦x≦)① について, 次の問いに答えよ. (1) ① を sin2x, cos2.x で表せ. の値を求めよ

未解決 回答数: 0
1/14