学年

教科

質問の種類

数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

1番よくわからないです

目の方程式を 基本84 =-4x+5 ] を満たす の例 [2] を満たす 円の例 半径 2 (t,s) が直線 +5 上にあるか -4t+5 ⇔A=±B がx軸の上側 がx軸の下側 OST x2+y2+bx+my+n=0の表す図形 日本 例題 87 (1) 方程式x2+y2+6x-8y+9= 0 はどのような図形を表すか。 方程式 を求めよ。 x2+y2+2px+3py+13 = 0 が円を表すとき、 定数の値の範囲 p.138 基本事項 1 CHART & SOLUTION arty'+lx+my+n=0の表す図形x, yについて平方完成する (²+2+2 x + ( ₂ ) } + {y² + 2. 2 y + (7) } − ( 2 ) + (2) -- ((x+ 2) + (x + 2)² = - 1²+ m²-4n 4 14+ m²-4n>0 DEZ, 40(-21/1, の形に変形。 m 中心(1/21)半径 (1) ゆえに (x+3)²+(y−4)²=16 よって, 中心(-3,4), 半径4の円を表す。 (2) (x²+2px+p²) よって したがって (x2+6x+9)+(y²-8y+16)=9+16-9 x+p²) + {y² + 3py + ( ²₁ p)²}=p² + ( 2 P) ² - 13 121= (x+p)² + (y + 3 p)² = 13²-13 ゆえに 4 13 この方程式が円を表すための条件は p²-4>0 ゆえに in として, √1²+ m²-An 2 p<-2,2<p p²-13>0 (p+2)(p-2)>0 の円を表す。 HINFORMATION x2+y2+bx+my+n=0の表す図形 方程式x2+y2+bx+my+n=0 が円を表さない場合もある。 例1 方程式x2+y^2+6x-8y+25=0 の表す図形 変形すると (x+3)+(y-4)²0 ←右辺が 0 両辺にx,yの係数の半 分の2乗をそれぞれ加 える。 ← x,yについて それぞ れ平方完成する。 実数の性質 A,Bが実数のとき A2+B2≧0 143 これを満たす実数x, y は, x= -3, y=4 のみである。 よって、方程式が表す図形は 点(-3, 4) 例2 方程式x2+y^+6x-8y+30=0 の表す図形 変形すると (x+3)+(y-4)²=-5|←右辺が負 これを満たす実数x, y は存在しない。 よって, 方程式が表す図形はない。 等号は A=B=0 のときに限り成立。 PRACTICE 87② 10 方程式x^2+y2+5x-3y+6=0 はどのような図形を表すか。 1=2-1 (2) 求める 方程式x2+y2+6px-2py+28p+6=0 が円を表すとき,定数の値の範囲を

回答募集中 回答数: 0
1/22